|
1 |
| -import argparse |
2 |
| -import os |
3 |
| -from pathlib import Path |
4 |
| - |
5 |
| -import librosa |
6 |
| -import numpy as np |
7 |
| -import torch |
8 |
| -import torch.nn as nn |
9 |
| -from torch.utils.data import DataLoader, Dataset |
10 |
| -from tqdm import tqdm |
11 |
| -from transformers import Wav2Vec2Processor |
12 |
| -from transformers.models.wav2vec2.modeling_wav2vec2 import ( |
13 |
| - Wav2Vec2Model, |
14 |
| - Wav2Vec2PreTrainedModel, |
15 |
| -) |
16 |
| - |
17 |
| -import utils |
18 |
| -from config import config |
19 |
| - |
20 |
| - |
21 |
| -class RegressionHead(nn.Module): |
22 |
| - r"""Classification head.""" |
23 |
| - |
24 |
| - def __init__(self, config): |
25 |
| - super().__init__() |
26 |
| - |
27 |
| - self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
28 |
| - self.dropout = nn.Dropout(config.final_dropout) |
29 |
| - self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
30 |
| - |
31 |
| - def forward(self, features, **kwargs): |
32 |
| - x = features |
33 |
| - x = self.dropout(x) |
34 |
| - x = self.dense(x) |
35 |
| - x = torch.tanh(x) |
36 |
| - x = self.dropout(x) |
37 |
| - x = self.out_proj(x) |
38 |
| - |
39 |
| - return x |
40 |
| - |
41 |
| - |
42 |
| -class EmotionModel(Wav2Vec2PreTrainedModel): |
43 |
| - r"""Speech emotion classifier.""" |
44 |
| - |
45 |
| - def __init__(self, config): |
46 |
| - super().__init__(config) |
47 |
| - |
48 |
| - self.config = config |
49 |
| - self.wav2vec2 = Wav2Vec2Model(config) |
50 |
| - self.classifier = RegressionHead(config) |
51 |
| - self.init_weights() |
52 |
| - |
53 |
| - def forward( |
54 |
| - self, |
55 |
| - input_values, |
56 |
| - ): |
57 |
| - outputs = self.wav2vec2(input_values) |
58 |
| - hidden_states = outputs[0] |
59 |
| - hidden_states = torch.mean(hidden_states, dim=1) |
60 |
| - logits = self.classifier(hidden_states) |
61 |
| - |
62 |
| - return hidden_states, logits |
63 |
| - |
64 |
| - |
65 |
| -class AudioDataset(Dataset): |
66 |
| - def __init__(self, list_of_wav_files, sr, processor): |
67 |
| - self.list_of_wav_files = list_of_wav_files |
68 |
| - self.processor = processor |
69 |
| - self.sr = sr |
70 |
| - |
71 |
| - def __len__(self): |
72 |
| - return len(self.list_of_wav_files) |
73 |
| - |
74 |
| - def __getitem__(self, idx): |
75 |
| - wav_file = self.list_of_wav_files[idx] |
76 |
| - audio_data, _ = librosa.load(wav_file, sr=self.sr) |
77 |
| - processed_data = self.processor(audio_data, sampling_rate=self.sr)[ |
78 |
| - "input_values" |
79 |
| - ][0] |
80 |
| - return torch.from_numpy(processed_data) |
81 |
| - |
82 |
| - |
83 |
| -def process_func( |
84 |
| - x: np.ndarray, |
85 |
| - sampling_rate: int, |
86 |
| - model: EmotionModel, |
87 |
| - processor: Wav2Vec2Processor, |
88 |
| - device: str, |
89 |
| - embeddings: bool = False, |
90 |
| -) -> np.ndarray: |
91 |
| - r"""Predict emotions or extract embeddings from raw audio signal.""" |
92 |
| - model = model.to(device) |
93 |
| - y = processor(x, sampling_rate=sampling_rate) |
94 |
| - y = y["input_values"][0] |
95 |
| - y = torch.from_numpy(y).unsqueeze(0).to(device) |
96 |
| - |
97 |
| - # run through model |
98 |
| - with torch.no_grad(): |
99 |
| - y = model(y)[0 if embeddings else 1] |
100 |
| - |
101 |
| - # convert to numpy |
102 |
| - y = y.detach().cpu().numpy() |
103 |
| - |
104 |
| - return y |
105 |
| - |
106 |
| - |
107 |
| -def get_emo(path): |
108 |
| - wav, sr = librosa.load(path, 16000) |
109 |
| - device = config.bert_gen_config.device |
110 |
| - return process_func( |
111 |
| - np.expand_dims(wav, 0).astype(np.float64), |
112 |
| - sr, |
113 |
| - model, |
114 |
| - processor, |
115 |
| - device, |
116 |
| - embeddings=True, |
117 |
| - ).squeeze(0) |
118 |
| - |
119 |
| - |
120 |
| -if __name__ == "__main__": |
121 |
| - parser = argparse.ArgumentParser() |
122 |
| - parser.add_argument( |
123 |
| - "-c", "--config", type=str, default=config.bert_gen_config.config_path |
124 |
| - ) |
125 |
| - parser.add_argument( |
126 |
| - "--num_processes", type=int, default=config.bert_gen_config.num_processes |
127 |
| - ) |
128 |
| - args, _ = parser.parse_known_args() |
129 |
| - config_path = args.config |
130 |
| - hps = utils.get_hparams_from_file(config_path) |
131 |
| - |
132 |
| - device = config.bert_gen_config.device |
133 |
| - |
134 |
| - model_name = "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim" |
135 |
| - REPO_ID = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim" |
136 |
| - if not Path(model_name).joinpath("pytorch_model.bin").exists(): |
137 |
| - utils.download_emo_models(config.mirror, model_name, REPO_ID) |
138 |
| - |
139 |
| - processor = Wav2Vec2Processor.from_pretrained(model_name) |
140 |
| - model = EmotionModel.from_pretrained(model_name).to(device) |
141 |
| - |
142 |
| - lines = [] |
143 |
| - with open(hps.data.training_files, encoding="utf-8") as f: |
144 |
| - lines.extend(f.readlines()) |
145 |
| - |
146 |
| - with open(hps.data.validation_files, encoding="utf-8") as f: |
147 |
| - lines.extend(f.readlines()) |
148 |
| - |
149 |
| - wavnames = [line.split("|")[0] for line in lines] |
150 |
| - dataset = AudioDataset(wavnames, 16000, processor) |
151 |
| - data_loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=16) |
152 |
| - |
153 |
| - with torch.no_grad(): |
154 |
| - for i, data in tqdm(enumerate(data_loader), total=len(data_loader)): |
155 |
| - wavname = wavnames[i] |
156 |
| - emo_path = wavname.replace(".wav", ".emo.npy") |
157 |
| - if os.path.exists(emo_path): |
158 |
| - continue |
159 |
| - emb = model(data.to(device))[0].detach().cpu().numpy() |
160 |
| - np.save(emo_path, emb) |
161 |
| - |
| 1 | +import argparse |
| 2 | +import os |
| 3 | +from pathlib import Path |
| 4 | + |
| 5 | +import librosa |
| 6 | +import numpy as np |
| 7 | +import torch |
| 8 | +import torch.nn as nn |
| 9 | +from torch.utils.data import Dataset |
| 10 | +from torch.utils.data import DataLoader, Dataset |
| 11 | +from tqdm import tqdm |
| 12 | +from transformers import Wav2Vec2Processor |
| 13 | +from transformers.models.wav2vec2.modeling_wav2vec2 import ( |
| 14 | + Wav2Vec2Model, |
| 15 | + Wav2Vec2PreTrainedModel, |
| 16 | +) |
| 17 | + |
| 18 | +import utils |
| 19 | +from config import config |
| 20 | + |
| 21 | + |
| 22 | +class RegressionHead(nn.Module): |
| 23 | + r"""Classification head.""" |
| 24 | + |
| 25 | + def __init__(self, config): |
| 26 | + super().__init__() |
| 27 | + |
| 28 | + self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
| 29 | + self.dropout = nn.Dropout(config.final_dropout) |
| 30 | + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
| 31 | + |
| 32 | + def forward(self, features, **kwargs): |
| 33 | + x = features |
| 34 | + x = self.dropout(x) |
| 35 | + x = self.dense(x) |
| 36 | + x = torch.tanh(x) |
| 37 | + x = self.dropout(x) |
| 38 | + x = self.out_proj(x) |
| 39 | + |
| 40 | + return x |
| 41 | + |
| 42 | + |
| 43 | +class EmotionModel(Wav2Vec2PreTrainedModel): |
| 44 | + r"""Speech emotion classifier.""" |
| 45 | + |
| 46 | + def __init__(self, config): |
| 47 | + super().__init__(config) |
| 48 | + |
| 49 | + self.config = config |
| 50 | + self.wav2vec2 = Wav2Vec2Model(config) |
| 51 | + self.classifier = RegressionHead(config) |
| 52 | + self.init_weights() |
| 53 | + |
| 54 | + def forward( |
| 55 | + self, |
| 56 | + input_values, |
| 57 | + ): |
| 58 | + outputs = self.wav2vec2(input_values) |
| 59 | + hidden_states = outputs[0] |
| 60 | + hidden_states = torch.mean(hidden_states, dim=1) |
| 61 | + logits = self.classifier(hidden_states) |
| 62 | + |
| 63 | + return hidden_states, logits |
| 64 | + |
| 65 | + |
| 66 | +class AudioDataset(Dataset): |
| 67 | + def __init__(self, list_of_wav_files, sr, processor): |
| 68 | + self.list_of_wav_files = list_of_wav_files |
| 69 | + self.processor = processor |
| 70 | + self.sr = sr |
| 71 | + |
| 72 | + def __len__(self): |
| 73 | + return len(self.list_of_wav_files) |
| 74 | + |
| 75 | + def __getitem__(self, idx): |
| 76 | + wav_file = self.list_of_wav_files[idx] |
| 77 | + audio_data, _ = librosa.load(wav_file, sr=self.sr) |
| 78 | + processed_data = self.processor(audio_data, sampling_rate=self.sr)[ |
| 79 | + "input_values" |
| 80 | + ][0] |
| 81 | + return torch.from_numpy(processed_data) |
| 82 | + |
| 83 | + |
| 84 | +def process_func( |
| 85 | + x: np.ndarray, |
| 86 | + sampling_rate: int, |
| 87 | + model: EmotionModel, |
| 88 | + processor: Wav2Vec2Processor, |
| 89 | + device: str, |
| 90 | + embeddings: bool = False, |
| 91 | +) -> np.ndarray: |
| 92 | + r"""Predict emotions or extract embeddings from raw audio signal.""" |
| 93 | + model = model.to(device) |
| 94 | + y = processor(x, sampling_rate=sampling_rate) |
| 95 | + y = y["input_values"][0] |
| 96 | + y = torch.from_numpy(y).unsqueeze(0).to(device) |
| 97 | + |
| 98 | + # run through model |
| 99 | + with torch.no_grad(): |
| 100 | + y = model(y)[0 if embeddings else 1] |
| 101 | + |
| 102 | + # convert to numpy |
| 103 | + y = y.detach().cpu().numpy() |
| 104 | + |
| 105 | + return y |
| 106 | + |
| 107 | + |
| 108 | +def get_emo(path): |
| 109 | + wav, sr = librosa.load(path, 16000) |
| 110 | + device = config.bert_gen_config.device |
| 111 | + return process_func( |
| 112 | + np.expand_dims(wav, 0).astype(np.float), |
| 113 | + sr, |
| 114 | + model, |
| 115 | + processor, |
| 116 | + device, |
| 117 | + embeddings=True, |
| 118 | + ).squeeze(0) |
| 119 | + |
| 120 | + |
| 121 | +if __name__ == "__main__": |
| 122 | + parser = argparse.ArgumentParser() |
| 123 | + parser.add_argument( |
| 124 | + "-c", "--config", type=str, default=config.bert_gen_config.config_path |
| 125 | + ) |
| 126 | + parser.add_argument( |
| 127 | + "--num_processes", type=int, default=config.bert_gen_config.num_processes |
| 128 | + ) |
| 129 | + args, _ = parser.parse_known_args() |
| 130 | + config_path = args.config |
| 131 | + hps = utils.get_hparams_from_file(config_path) |
| 132 | + |
| 133 | + device = config.bert_gen_config.device |
| 134 | + |
| 135 | + model_name = "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim" |
| 136 | + REPO_ID = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim" |
| 137 | + if not Path(model_name).joinpath("pytorch_model.bin").exists(): |
| 138 | + utils.download_emo_models(config.mirror, REPO_ID, model_name) |
| 139 | + |
| 140 | + processor = Wav2Vec2Processor.from_pretrained(model_name) |
| 141 | + model = EmotionModel.from_pretrained(model_name).to(device) |
| 142 | + |
| 143 | + lines = [] |
| 144 | + with open(hps.data.training_files, encoding="utf-8") as f: |
| 145 | + lines.extend(f.readlines()) |
| 146 | + |
| 147 | + with open(hps.data.validation_files, encoding="utf-8") as f: |
| 148 | + lines.extend(f.readlines()) |
| 149 | + |
| 150 | + wavnames = [line.split("|")[0] for line in lines] |
| 151 | + dataset = AudioDataset(wavnames, 16000, processor) |
| 152 | + data_loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=16) |
| 153 | + |
| 154 | + with torch.no_grad(): |
| 155 | + for i, data in tqdm(enumerate(data_loader), total=len(data_loader)): |
| 156 | + wavname = wavnames[i] |
| 157 | + emo_path = wavname.replace(".wav", ".emo.npy") |
| 158 | + if os.path.exists(emo_path): |
| 159 | + continue |
| 160 | + emb = model(data.to(device))[0].detach().cpu().numpy() |
| 161 | + np.save(emo_path, emb) |
| 162 | + |
162 | 163 | print("Emo vec 生成完毕!")
|
0 commit comments