1
1
# -*- coding: utf-8 -*-
2
2
3
- import tarfile
4
- import scipy .io
5
- import numpy as np
6
3
import os
7
- import cv2 as cv
8
- import shutil
9
4
import random
10
- from console_progressbar import ProgressBar
5
+ import shutil
6
+ import tarfile
7
+
8
+ import cv2 as cv
9
+ import numpy as np
10
+ import scipy .io
11
+ from tqdm import tqdm
11
12
12
13
13
14
def ensure_folder (folder ):
@@ -23,9 +24,7 @@ def save_train_data(fnames, labels, bboxes):
23
24
num_train = int (round (num_samples * train_split ))
24
25
train_indexes = random .sample (range (num_samples ), num_train )
25
26
26
- pb = ProgressBar (total = 100 , prefix = 'Save train data' , suffix = '' , decimals = 3 , length = 50 , fill = '=' )
27
-
28
- for i in range (num_samples ):
27
+ for i in tqdm (range (num_samples )):
29
28
fname = fnames [i ]
30
29
label = labels [i ]
31
30
(x1 , y1 , x2 , y2 ) = bboxes [i ]
@@ -40,7 +39,6 @@ def save_train_data(fnames, labels, bboxes):
40
39
x2 = min (x2 + margin , width )
41
40
y2 = min (y2 + margin , height )
42
41
# print("{} -> {}".format(fname, label))
43
- pb .print_progress_bar ((i + 1 ) * 100 / num_samples )
44
42
45
43
if i in train_indexes :
46
44
dst_folder = 'data/train'
@@ -62,9 +60,7 @@ def save_test_data(fnames, bboxes):
62
60
dst_folder = 'data/test'
63
61
num_samples = len (fnames )
64
62
65
- pb = ProgressBar (total = 100 , prefix = 'Save test data' , suffix = '' , decimals = 3 , length = 50 , fill = '=' )
66
-
67
- for i in range (num_samples ):
63
+ for i in tqdm (range (num_samples )):
68
64
fname = fnames [i ]
69
65
(x1 , y1 , x2 , y2 ) = bboxes [i ]
70
66
src_path = os .path .join (src_folder , fname )
0 commit comments