-
Notifications
You must be signed in to change notification settings - Fork 262
Open
Description
Hi,foamliu:
- When “loss=overall_loss”, "pretrained_path = None" and "num_gpu=1" are set, an error occurs when running “train.py”. The error situation is as follows:
- code: final.compile(optimizer='nadam', loss=overall_loss, target_tensors=[decoder_target])
- error: Traceback (most recent call last):
File "C:\Users\Administrator\anaconda3\envs\tensorflow1.15\lib\site-packages\tensorflow_core\python\client\session.py", line 1365, in _do_call
return fn(*args)
File "C:\Users\Administrator\anaconda3\envs\tensorflow1.15\lib\site-packages\tensorflow_core\python\client\session.py", line 1350, in _run_fn
target_list, run_metadata)
File "C:\Users\Administrator\anaconda3\envs\tensorflow1.15\lib\site-packages\tensorflow_core\python\client\session.py", line 1443, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: Incompatible shapes: [8,320,320,0] vs. [0,320,320,3]
[[{{node loss/refinement_pred_loss/sub_2}}]]
[[loss/mul/_1021]]
(1) Invalid argument: Incompatible shapes: [8,320,320,0] vs. [0,320,320,3]
[[{{node loss/refinement_pred_loss/sub_2}}]]
0 successful operations.
0 derived errors ignored.
-
When “loss=alpha_prediction_loss”is set, Training can run normally.
-
overall_loss=0.5* alpha_prediction_loss(y_true, y_pred) + 0.5* compositional_loss(y_true, y_pred), so I doubt whether it is caused by the problem of compositional_loss.
I wonder if you have encountered this problem during training?
Thank you!
Thunder003
Metadata
Metadata
Assignees
Labels
No labels