给定一个 m × n 的网格和一个球。球的起始坐标为 (i,j) ,你可以将球移到相邻的单元格内,或者往上、下、左、右四个方向上移动使球穿过网格边界。但是,你最多可以移动 N 次。找出可以将球移出边界的路径数量。答案可能非常大,返回 结果 mod 109 + 7 的值。
输入: m = 2, n = 2, N = 2, i = 0, j = 0 输出: 6 解释:![]()
输入: m = 1, n = 3, N = 3, i = 0, j = 1 输出: 12 解释:![]()
- 球一旦出界,就不能再被移动回网格内。
- 网格的长度和高度在 [1,50] 的范围内。
- N 在 [0,50] 的范围内。
impl Solution {
pub fn find_paths(m: i32, n: i32, max_move: i32, start_row: i32, start_column: i32) -> i32 {
let mut dp0 = vec![vec![0; n as usize]; m as usize];
dp0[start_row as usize][start_column as usize] = 1;
let mut ret = 0;
for _ in 0..max_move {
let mut dp1 = vec![vec![0; n as usize]; m as usize];
for r in 0..m as usize {
for c in 0..n as usize {
if r > 0 {
dp1[r - 1][c] = (dp1[r - 1][c] + dp0[r][c]) % 1_000_000_007;
} else {
ret = (ret + dp0[r][c]) % 1_000_000_007;
}
if c > 0 {
dp1[r][c - 1] = (dp1[r][c - 1] + dp0[r][c]) % 1_000_000_007;
} else {
ret = (ret + dp0[r][c]) % 1_000_000_007;
}
if r + 1 < m as usize {
dp1[r + 1][c] = (dp1[r + 1][c] + dp0[r][c]) % 1_000_000_007;
} else {
ret = (ret + dp0[r][c]) % 1_000_000_007;
}
if c + 1 < n as usize {
dp1[r][c + 1] = (dp1[r][c + 1] + dp0[r][c]) % 1_000_000_007;
} else {
ret = (ret + dp0[r][c]) % 1_000_000_007;
}
}
}
dp0 = dp1;
}
ret
}
}