Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
MyCircularQueue(k)
: Constructor, set the size of the queue to be k.Front
: Get the front item from the queue. If the queue is empty, return -1.Rear
: Get the last item from the queue. If the queue is empty, return -1.enQueue(value)
: Insert an element into the circular queue. Return true if the operation is successful.deQueue()
: Delete an element from the circular queue. Return true if the operation is successful.isEmpty()
: Checks whether the circular queue is empty or not.isFull()
: Checks whether the circular queue is full or not.
MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3 circularQueue.enQueue(1); // return true circularQueue.enQueue(2); // return true circularQueue.enQueue(3); // return true circularQueue.enQueue(4); // return false, the queue is full circularQueue.Rear(); // return 3 circularQueue.isFull(); // return true circularQueue.deQueue(); // return true circularQueue.enQueue(4); // return true circularQueue.Rear(); // return 4
- All values will be in the range of [0, 1000].
- The number of operations will be in the range of [1, 1000].
- Please do not use the built-in Queue library.
struct MyCircularQueue {
data: Vec<i32>,
size: usize,
len: usize,
head: usize,
}
/**
* `&self` means the method takes an immutable reference.
* If you need a mutable reference, change it to `&mut self` instead.
*/
impl MyCircularQueue {
/** Initialize your data structure here. Set the size of the queue to be k. */
fn new(k: i32) -> Self {
let k = k as usize;
Self {
data: vec![0; k],
size: k,
len: 0,
head: 0,
}
}
/** Insert an element into the circular queue. Return true if the operation is successful. */
fn en_queue(&mut self, value: i32) -> bool {
if self.is_full() {
false
} else {
self.data[(self.head + self.len) % self.size] = value;
self.len += 1;
true
}
}
/** Delete an element from the circular queue. Return true if the operation is successful. */
fn de_queue(&mut self) -> bool {
if self.is_empty() {
false
} else {
self.head += 1;
self.head %= self.size;
self.len -= 1;
true
}
}
/** Get the front item from the queue. */
fn front(&self) -> i32 {
if self.is_empty() {
-1
} else {
self.data[self.head]
}
}
/** Get the last item from the queue. */
fn rear(&self) -> i32 {
if self.is_empty() {
-1
} else {
self.data[(self.head + self.len - 1) % self.size]
}
}
/** Checks whether the circular queue is empty or not. */
fn is_empty(&self) -> bool {
self.len == 0
}
/** Checks whether the circular queue is full or not. */
fn is_full(&self) -> bool {
self.len == self.size
}
}
/**
* Your MyCircularQueue object will be instantiated and called as such:
* let obj = MyCircularQueue::new(k);
* let ret_1: bool = obj.en_queue(value);
* let ret_2: bool = obj.de_queue();
* let ret_3: i32 = obj.front();
* let ret_4: i32 = obj.rear();
* let ret_5: bool = obj.is_empty();
* let ret_6: bool = obj.is_full();
*/