给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个个索引 i
并将 A[i]
替换为 -A[i]
,然后总共重复这个过程 K
次。(我们可以多次选择同一个索引 i
。)
以这种方式修改数组后,返回数组可能的最大和。
输入: A = [4,2,3], K = 1 输出: 5 解释: 选择索引 (1,) ,然后 A 变为 [4,-2,3]。
输入: A = [3,-1,0,2], K = 3 输出: 6 解释: 选择索引 (1, 2, 2) ,然后 A 变为 [3,1,0,2]。
输入: A = [2,-3,-1,5,-4], K = 2 输出: 13 解释: 选择索引 (1, 4) ,然后 A 变为 [2,3,-1,5,4]。
1 <= A.length <= 10000
1 <= K <= 10000
-100 <= A[i] <= 100
impl Solution {
pub fn largest_sum_after_k_negations(a: Vec<i32>, k: i32) -> i32 {
let mut k = k;
let mut a = a;
a.sort_unstable();
for i in 0..a.len() {
if a[i] < 0 && k > 0 {
a[i] = -a[i];
k -= 1;
} else if k % 2 == 0 {
break;
} else if i > 0 && a[i] > a[i - 1] {
a[i - 1] = -a[i - 1];
break;
} else {
a[i] = -a[i];
break;
}
}
a.iter().sum()
}
}
impl Solution {
pub fn largest_sum_after_k_negations(a: Vec<i32>, k: i32) -> i32 {
let mut k = k;
let mut cnt_neg = [0; 101];
let mut sum = 0;
let mut min_abs = 100;
for n in a {
if n >= 0 {
sum += n;
} else {
cnt_neg[-n as usize] += 1;
}
min_abs = min_abs.min(n.abs());
}
for i in (1..101).rev() {
if k > 0 {
if cnt_neg[i as usize] <= k {
sum += i * cnt_neg[i as usize];
k -= cnt_neg[i as usize];
} else {
sum += i * (2 * k - cnt_neg[i as usize]);
k = 0;
}
} else {
sum += -i * cnt_neg[i as usize];
}
}
if k % 2 == 1 {
sum -= 2 * min_abs;
}
sum
}
}