给出一个函数 f(x, y)
和一个目标结果 z
,请你计算方程 f(x,y) == z
所有可能的正整数 数对 x
和 y
。
给定函数是严格单调的,也就是说:
f(x, y) < f(x + 1, y)
f(x, y) < f(x, y + 1)
函数接口定义如下:
interface CustomFunction {
public:
// Returns positive integer f(x, y) for any given positive integer x and y.
int f(int x, int y);
};
如果你想自定义测试,你可以输入整数 function_id
和一个目标结果 z
作为输入,其中 function_id
表示一个隐藏函数列表中的一个函数编号,题目只会告诉你列表中的 2
个函数。
你可以将满足条件的 结果数对 按任意顺序返回。
输入: function_id = 1, z = 5 输出: [[1,4],[2,3],[3,2],[4,1]] 解释: function_id = 1 表示 f(x, y) = x + y
输入: function_id = 2, z = 5 输出: [[1,5],[5,1]] 解释: function_id = 2 表示 f(x, y) = x * y
1 <= function_id <= 9
1 <= z <= 100
- 题目保证
f(x, y) == z
的解处于1 <= x, y <= 1000
的范围内。 - 在
1 <= x, y <= 1000
的前提下,题目保证f(x, y)
是一个 32 位有符号整数。
"""
This is the custom function interface.
You should not implement it, or speculate about its implementation
class CustomFunction:
# Returns f(x, y) for any given positive integers x and y.
# Note that f(x, y) is increasing with respect to both x and y.
# i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
def f(self, x, y):
"""
class Solution:
def findSolution(self, customfunction: 'CustomFunction', z: int) -> List[List[int]]:
ret = []
max_y = 1000
for x in range(1, 1001):
if customfunction.f(x, 1000) < z:
continue
if customfunction.f(x, 1) > z:
break
for y in range(1, max_y + 1):
if customfunction.f(x, y) > z:
max_y = y - 1
break
elif customfunction.f(x, y) == z:
ret.append([x, y])
max_y = y - 1
break
return ret
"""
This is the custom function interface.
You should not implement it, or speculate about its implementation
class CustomFunction:
# Returns f(x, y) for any given positive integers x and y.
# Note that f(x, y) is increasing with respect to both x and y.
# i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
def f(self, x, y):
"""
class Solution:
def findSolution(self, customfunction: 'CustomFunction', z: int) -> List[List[int]]:
ret = []
min_x, max_x = 1, 1000
l, r = 2, 1000
while l <= r:
m = (l + r) // 2
if customfunction.f(m, 1000) < z:
l = m + 1
elif customfunction.f(m - 1, 1000) >= z:
r = m - 1
else:
min_x = m
break
l, r = 1, 999
while l <= r:
m = (l + r) // 2
if customfunction.f(m, 1) > z:
r = m - 1
elif customfunction.f(m + 1, 1) <= z:
l = m + 1
else:
max_x = m
break
for x in range(min_x, max_x + 1):
l, r = 1, 1000
while l <= r:
m = (l + r) // 2
if customfunction.f(x, m) < z:
l = m + 1
elif customfunction.f(x, m) > z:
r = m - 1
else:
ret.append([x, m])
break
return ret
"""
This is the custom function interface.
You should not implement it, or speculate about its implementation
class CustomFunction:
# Returns f(x, y) for any given positive integers x and y.
# Note that f(x, y) is increasing with respect to both x and y.
# i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
def f(self, x, y):
"""
class Solution:
def findSolution(self, customfunction: 'CustomFunction', z: int) -> List[List[int]]:
ret = []
x, y = 1, 1000
while x < 1001 and y > 0:
if customfunction.f(x, y) > z:
y -= 1
elif customfunction.f(x, y) < z:
x += 1
else:
ret.append([x, y])
x += 1
y -= 1
return ret