给你一个整数 n
,表示有 n
间零售商店。总共有 m
种产品,每种产品的数目用一个下标从 0 开始的整数数组 quantities
表示,其中 quantities[i]
表示第 i
种商品的数目。
你需要将 所有商品 分配到零售商店,并遵守这些规则:
- 一间商店 至多 只能有 一种商品 ,但一间商店拥有的商品数目可以为 任意 件。
- 分配后,每间商店都会被分配一定数目的商品(可能为
0
件)。用x
表示所有商店中分配商品数目的最大值,你希望x
越小越好。也就是说,你想 最小化 分配给任意商店商品数目的 最大值 。
请你返回最小的可能的 x
。
输入: n = 6, quantities = [11,6] 输出: 3 解释: 一种最优方案为: - 11 件种类为 0 的商品被分配到前 4 间商店,分配数目分别为:2,3,3,3 。 - 6 件种类为 1 的商品被分配到另外 2 间商店,分配数目分别为:3,3 。 分配给所有商店的最大商品数目为 max(2, 3, 3, 3, 3, 3) = 3 。
输入: n = 7, quantities = [15,10,10] 输出: 5 解释: 一种最优方案为: - 15 件种类为 0 的商品被分配到前 3 间商店,分配数目为:5,5,5 。 - 10 件种类为 1 的商品被分配到接下来 2 间商店,数目为:5,5 。 - 10 件种类为 2 的商品被分配到最后 2 间商店,数目为:5,5 。 分配给所有商店的最大商品数目为 max(5, 5, 5, 5, 5, 5, 5) = 5 。
输入: n = 1, quantities = [100000] 输出: 100000 解释: 唯一一种最优方案为: - 所有 100000 件商品 0 都分配到唯一的商店中。 分配给所有商店的最大商品数目为 max(100000) = 100000 。
m == quantities.length
1 <= m <= n <= 105
1 <= quantities[i] <= 105
impl Solution {
pub fn minimized_maximum(n: i32, quantities: Vec<i32>) -> i32 {
let mut low = 1;
let mut high = *quantities.iter().max().unwrap();
while low < high {
let x = (low + high) / 2;
let mut y = 0;
for q in &quantities {
y += q / x;
if q % x != 0 {
y += 1;
}
}
if y > n {
low = x + 1;
} else {
high = x;
}
}
high
}
}