Skip to content

Latest commit

 

History

History
57 lines (46 loc) · 2.48 KB

File metadata and controls

57 lines (46 loc) · 2.48 KB

2156. Find Substring With Given Hash Value

The hash of a 0-indexed string s of length k, given integers p and m, is computed using the following function:

  • hash(s, p, m) = (val(s[0]) * p0 + val(s[1]) * p1 + ... + val(s[k-1]) * pk-1) mod m.

Where val(s[i]) represents the index of s[i] in the alphabet from val('a') = 1 to val('z') = 26.

You are given a string s and the integers power, modulo, k, and hashValue. Return sub, the first substring of s of length k such that hash(sub, power, modulo) == hashValue.

The test cases will be generated such that an answer always exists.

A substring is a contiguous non-empty sequence of characters within a string.

Example 1:

Input: s = "leetcode", power = 7, modulo = 20, k = 2, hashValue = 0
Output: "ee"
Explanation: The hash of "ee" can be computed to be hash("ee", 7, 20) = (5 * 1 + 5 * 7) mod 20 = 40 mod 20 = 0.
"ee" is the first substring of length 2 with hashValue 0. Hence, we return "ee".

Example 2:

Input: s = "fbxzaad", power = 31, modulo = 100, k = 3, hashValue = 32
Output: "fbx"
Explanation: The hash of "fbx" can be computed to be hash("fbx", 31, 100) = (6 * 1 + 2 * 31 + 24 * 312) mod 100 = 23132 mod 100 = 32.
The hash of "bxz" can be computed to be hash("bxz", 31, 100) = (2 * 1 + 24 * 31 + 26 * 312) mod 100 = 25732 mod 100 = 32.
"fbx" is the first substring of length 3 with hashValue 32. Hence, we return "fbx".
Note that "bxz" also has a hash of 32 but it appears later than "fbx".

Constraints:

  • 1 <= k <= s.length <= 2 * 104
  • 1 <= power, modulo <= 109
  • 0 <= hashValue < modulo
  • s consists of lowercase English letters only.
  • The test cases are generated such that an answer always exists.

Solutions (Python)

1. Solution

class Solution:
    def subStrHash(self, s: str, power: int, modulo: int, k: int, hashValue: int) -> str:
        def val(c): return ord(c) - 96
        value = 0
        start = 0

        for i in range(len(s) - 1, -1, -1):
            value = (value * power + val(s[i])) % modulo
            if i + k < len(s):
                value = (value - val(s[i + k]) *
                         pow(power, k, modulo)) % modulo
            if value == hashValue:
                start = i

        return s[start:start + k]