-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_perfprof.py
126 lines (109 loc) · 3.62 KB
/
plot_perfprof.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import matplotlib.pyplot as plt
import pathlib
import pandas
import numpy
import sys
# For scientific references see:
#
# Dolan E.D., Moŕe J.J.
# 2002
# Benchmarking Optimization Software with Performance Profiles.
# Mathematical Programming 91(2):201–213
# https://link.springer.com/article/10.1007/s101070100263
def set_defaults(kwargs):
defaults = dict()
defaults["problem_type"] = "min"
defaults["xlimit"] = 10
defaults["save"] = False
defaults["reverse"] = False
defaults["marker"] = "."
defaults["marker_size"] = 10
defaults["title"] = "Performance Profile"
defaults["xlabel"] = "Ratio to best"
defaults["ylabel"] = "How many"
defaults.update(kwargs)
kwargs.update(defaults)
def plot_dataframe(df, **kwargs):
set_defaults(kwargs)
fig, axs = plt.subplots(1)
if kwargs["problem_type"] == "min":
get_best = pandas.DataFrame.min
else:
get_best = pandas.DataFrame.max
best = get_best(df, axis=1)
N = len(df)
y = numpy.linspace(0.0, 1.0, N+1)[1:]
if "letters" in kwargs:
if kwargs["letters"] != "":
if len(kwargs["letters"]) < len(df.columns):
print("ERROR: not enough letters specified")
sys.exit(1)
for i, method in enumerate(df.columns):
vals = df[method]
marker = kwargs["marker"]
if "letters" in kwargs:
if kwargs["letters"] == "":
marker = r"${}$".format(chr(ord("A")+i))
else:
marker = r"${}$".format(kwargs["letters"][i])
x = (vals / best).sort_values()
x = 1 / x if kwargs["reverse"] else x
plt.step(x, y, where="post", label=method,
marker=marker, markersize=kwargs["marker_size"])
fig.suptitle(kwargs["title"])
plt.xlabel(kwargs["xlabel"])
plt.ylabel(kwargs["ylabel"])
ticks = numpy.linspace(0, 1, 11)
tick_names = [f"{t*100:.0f}%" for t in ticks]
plt.yticks(ticks, tick_names)
if not kwargs["reverse"]:
right = min(plt.xlim()[1], kwargs["xlimit"])
plt.xlim(left=1)
plt.grid(True, linewidth=0.1)
if kwargs["problem_type"] == "min":
if kwargs["reverse"]:
plt.legend(loc="lower left")
else:
plt.legend(loc="lower right")
else:
if kwargs["reverse"]:
plt.legend(loc="upper right")
else:
plt.legend(loc="upper left")
if "output" in kwargs:
plt.savefig(kwargs["output"])
elif kwargs["save"]:
plt.savefig(str(pathlib.Path(kwargs["input"]).with_suffix(".pdf")))
else:
plt.show()
def extract_data(input_file):
df = pandas.read_csv(input_file)
r_opt = df[["input","r_opt"]].drop_duplicates(ignore_index=True)
pp = df.pivot(columns="pipeline", index="input", values="r_out")
pp = pandas.merge(pp, r_opt, on="input")
pp = pp.rename(columns={"r_opt":"OPT"})
which = []
if "LEX+VNS" in pp.columns:
which.append("LEX+VNS")
else:
which.append("LEX")
if "NN+VNS" in pp.columns:
which.append("NN+VNS")
else:
which.append("NN")
if "ML+VNS" in pp.columns:
which.append("ML+VNS")
else:
which.append("ML")
pp = pp[which]
return pp
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description=
"Plot an overall comparison of methods given a benchmark result",
argument_default=argparse.SUPPRESS)
parser.add_argument("input", metavar="INPUT", type=str,
help="Benchmark results (CSV)")
args = parser.parse_args()
df = extract_data(args.input)
plot_dataframe(df, xlimit=3)