-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathDistanceHelper.py
33 lines (28 loc) · 1.16 KB
/
DistanceHelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# -*- coding: utf-8 -*-
import math
'''
# 1) 用scikit cosine_similarity计算余弦相似度
from sklearn.metrics.pairwise import cosine_similarity
user_similarity=cosine_similarity(user_item_matric)
# 2) 用scikit pairwise_distances计算相似度,用pairwise_distances计算的Cosine distance是1-(cosine similarity)结果
from sklearn.metrics.pairwise import pairwise_distances
user_similarity = pairwise_distances(user_item_matric, metric='cosine')
'''
class DistanceHelper(object):
# 1) given two data points, calculate the euclidean distance between them
def Euclidean_distance(self, vector1, vector2):
points = zip(vector1, vector2)
diffs_squared_distance = [pow(a - b, 2) for (a, b) in points]
return math.sqrt(sum(diffs_squared_distance))
def Cosin_distance(self, vector1, vector2):
dot_product = 0.0
normA = 0.0
normB = 0.0
for a, b in zip(vector1, vector2):
dot_product += a * b
normA += a ** 2
normB += b ** 2
if normA == 0.0 or normB == 0.0:
return None
else:
return dot_product / ((normA * normB) ** 0.5)