|
| 1 | +use_gpu: true |
| 2 | +log_iter: 50 |
| 3 | +save_dir: output |
| 4 | +snapshot_epoch: 1 |
| 5 | +weights: output/petr_resnet50_16x2_coco/model_final |
| 6 | +epoch: 100 |
| 7 | +num_joints: &num_joints 17 |
| 8 | +pixel_std: &pixel_std 200 |
| 9 | +metric: COCO |
| 10 | +num_classes: 1 |
| 11 | +trainsize: &trainsize 512 |
| 12 | +flip_perm: &flip_perm [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] |
| 13 | +find_unused_parameters: False |
| 14 | + |
| 15 | +#####model |
| 16 | +architecture: PETR |
| 17 | +pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/PETR_pretrained.pdparams |
| 18 | + |
| 19 | +PETR: |
| 20 | + backbone: |
| 21 | + name: ResNet |
| 22 | + depth: 50 |
| 23 | + variant: b |
| 24 | + norm_type: bn |
| 25 | + freeze_norm: True |
| 26 | + freeze_at: 0 |
| 27 | + return_idx: [1,2,3] |
| 28 | + num_stages: 4 |
| 29 | + lr_mult_list: [0.1, 0.1, 0.1, 0.1] |
| 30 | + neck: |
| 31 | + name: ChannelMapper |
| 32 | + in_channels: [512, 1024, 2048] |
| 33 | + kernel_size: 1 |
| 34 | + out_channels: 256 |
| 35 | + norm_type: "gn" |
| 36 | + norm_groups: 32 |
| 37 | + act: None |
| 38 | + num_outs: 4 |
| 39 | + bbox_head: |
| 40 | + name: PETRHead |
| 41 | + num_query: 300 |
| 42 | + num_classes: 1 # only person |
| 43 | + in_channels: 2048 |
| 44 | + sync_cls_avg_factor: true |
| 45 | + with_kpt_refine: true |
| 46 | + transformer: |
| 47 | + name: PETRTransformer |
| 48 | + as_two_stage: true |
| 49 | + encoder: |
| 50 | + name: TransformerEncoder |
| 51 | + encoder_layer: |
| 52 | + name: TransformerEncoderLayer |
| 53 | + d_model: 256 |
| 54 | + attn: |
| 55 | + name: MSDeformableAttention |
| 56 | + embed_dim: 256 |
| 57 | + num_heads: 8 |
| 58 | + num_levels: 4 |
| 59 | + num_points: 4 |
| 60 | + dim_feedforward: 1024 |
| 61 | + dropout: 0.1 |
| 62 | + num_layers: 6 |
| 63 | + decoder: |
| 64 | + name: PETR_TransformerDecoder |
| 65 | + num_layers: 3 |
| 66 | + return_intermediate: true |
| 67 | + decoder_layer: |
| 68 | + name: PETR_TransformerDecoderLayer |
| 69 | + d_model: 256 |
| 70 | + dim_feedforward: 1024 |
| 71 | + dropout: 0.1 |
| 72 | + self_attn: |
| 73 | + name: MultiHeadAttention |
| 74 | + embed_dim: 256 |
| 75 | + num_heads: 8 |
| 76 | + dropout: 0.1 |
| 77 | + cross_attn: |
| 78 | + name: MultiScaleDeformablePoseAttention |
| 79 | + embed_dims: 256 |
| 80 | + num_heads: 8 |
| 81 | + num_levels: 4 |
| 82 | + num_points: 17 |
| 83 | + hm_encoder: |
| 84 | + name: TransformerEncoder |
| 85 | + encoder_layer: |
| 86 | + name: TransformerEncoderLayer |
| 87 | + d_model: 256 |
| 88 | + attn: |
| 89 | + name: MSDeformableAttention |
| 90 | + embed_dim: 256 |
| 91 | + num_heads: 8 |
| 92 | + num_levels: 1 |
| 93 | + num_points: 4 |
| 94 | + dim_feedforward: 1024 |
| 95 | + dropout: 0.1 |
| 96 | + num_layers: 1 |
| 97 | + refine_decoder: |
| 98 | + name: PETR_DeformableDetrTransformerDecoder |
| 99 | + num_layers: 2 |
| 100 | + return_intermediate: true |
| 101 | + decoder_layer: |
| 102 | + name: PETR_TransformerDecoderLayer |
| 103 | + d_model: 256 |
| 104 | + dim_feedforward: 1024 |
| 105 | + dropout: 0.1 |
| 106 | + self_attn: |
| 107 | + name: MultiHeadAttention |
| 108 | + embed_dim: 256 |
| 109 | + num_heads: 8 |
| 110 | + dropout: 0.1 |
| 111 | + cross_attn: |
| 112 | + name: MSDeformableAttention |
| 113 | + embed_dim: 256 |
| 114 | + num_levels: 4 |
| 115 | + positional_encoding: |
| 116 | + name: PositionEmbedding |
| 117 | + num_pos_feats: 128 |
| 118 | + normalize: true |
| 119 | + offset: -0.5 |
| 120 | + loss_cls: |
| 121 | + name: Weighted_FocalLoss |
| 122 | + use_sigmoid: true |
| 123 | + gamma: 2.0 |
| 124 | + alpha: 0.25 |
| 125 | + loss_weight: 2.0 |
| 126 | + reduction: "mean" |
| 127 | + loss_kpt: |
| 128 | + name: L1Loss |
| 129 | + loss_weight: 70.0 |
| 130 | + loss_kpt_rpn: |
| 131 | + name: L1Loss |
| 132 | + loss_weight: 70.0 |
| 133 | + loss_oks: |
| 134 | + name: OKSLoss |
| 135 | + loss_weight: 2.0 |
| 136 | + loss_hm: |
| 137 | + name: CenterFocalLoss |
| 138 | + loss_weight: 4.0 |
| 139 | + loss_kpt_refine: |
| 140 | + name: L1Loss |
| 141 | + loss_weight: 80.0 |
| 142 | + loss_oks_refine: |
| 143 | + name: OKSLoss |
| 144 | + loss_weight: 3.0 |
| 145 | + assigner: |
| 146 | + name: PoseHungarianAssigner |
| 147 | + cls_cost: |
| 148 | + name: FocalLossCost |
| 149 | + weight: 2.0 |
| 150 | + kpt_cost: |
| 151 | + name: KptL1Cost |
| 152 | + weight: 70.0 |
| 153 | + oks_cost: |
| 154 | + name: OksCost |
| 155 | + weight: 7.0 |
| 156 | + |
| 157 | +#####optimizer |
| 158 | +LearningRate: |
| 159 | + base_lr: 0.0002 |
| 160 | + schedulers: |
| 161 | + - !PiecewiseDecay |
| 162 | + milestones: [80] |
| 163 | + gamma: 0.1 |
| 164 | + use_warmup: false |
| 165 | + # - !LinearWarmup |
| 166 | + # start_factor: 0.001 |
| 167 | + # steps: 1000 |
| 168 | + |
| 169 | +OptimizerBuilder: |
| 170 | + clip_grad_by_norm: 0.1 |
| 171 | + optimizer: |
| 172 | + type: AdamW |
| 173 | + regularizer: |
| 174 | + factor: 0.0001 |
| 175 | + type: L2 |
| 176 | + |
| 177 | + |
| 178 | +#####data |
| 179 | +TrainDataset: |
| 180 | + !KeypointBottomUpCocoDataset |
| 181 | + image_dir: train2017 |
| 182 | + anno_path: annotations/person_keypoints_train2017.json |
| 183 | + dataset_dir: dataset/coco |
| 184 | + num_joints: *num_joints |
| 185 | + return_mask: false |
| 186 | + |
| 187 | +EvalDataset: |
| 188 | + !KeypointBottomUpCocoDataset |
| 189 | + image_dir: val2017 |
| 190 | + anno_path: annotations/person_keypoints_val2017.json |
| 191 | + dataset_dir: dataset/coco |
| 192 | + num_joints: *num_joints |
| 193 | + test_mode: true |
| 194 | + return_mask: false |
| 195 | + |
| 196 | +TestDataset: |
| 197 | + !ImageFolder |
| 198 | + anno_path: dataset/coco/keypoint_imagelist.txt |
| 199 | + |
| 200 | +worker_num: 2 |
| 201 | +global_mean: &global_mean [0.485, 0.456, 0.406] |
| 202 | +global_std: &global_std [0.229, 0.224, 0.225] |
| 203 | +TrainReader: |
| 204 | + sample_transforms: |
| 205 | + - Decode: {} |
| 206 | + - PhotoMetricDistortion: |
| 207 | + brightness_delta: 32 |
| 208 | + contrast_range: [0.5, 1.5] |
| 209 | + saturation_range: [0.5, 1.5] |
| 210 | + hue_delta: 18 |
| 211 | + - KeyPointFlip: |
| 212 | + flip_prob: 0.5 |
| 213 | + flip_permutation: *flip_perm |
| 214 | + - RandomAffine: |
| 215 | + max_degree: 30 |
| 216 | + scale: [1.0, 1.0] |
| 217 | + max_shift: 0. |
| 218 | + trainsize: -1 |
| 219 | + - RandomSelect: { transforms1: [ RandomShortSideRangeResize: { scales: [[400, 1400], [1400, 1400]]} ], |
| 220 | + transforms2: [ |
| 221 | + RandomShortSideResize: { short_side_sizes: [ 400, 500, 600 ] }, |
| 222 | + RandomSizeCrop: { min_size: 384, max_size: 600}, |
| 223 | + RandomShortSideRangeResize: { scales: [[400, 1400], [1400, 1400]]} ]} |
| 224 | + batch_transforms: |
| 225 | + - NormalizeImage: {mean: *global_mean, std: *global_std, is_scale: True} |
| 226 | + - PadGT: {pad_img: True, minimum_gtnum: 1} |
| 227 | + - Permute: {} |
| 228 | + batch_size: 2 |
| 229 | + shuffle: true |
| 230 | + drop_last: true |
| 231 | + use_shared_memory: true |
| 232 | + collate_batch: true |
| 233 | + |
| 234 | +EvalReader: |
| 235 | + sample_transforms: |
| 236 | + - PETR_Resize: {img_scale: [[800, 1333]], keep_ratio: True} |
| 237 | + # - MultiscaleTestResize: {origin_target_size: [[800, 1333]], use_flip: false} |
| 238 | + - NormalizeImage: |
| 239 | + mean: *global_mean |
| 240 | + std: *global_std |
| 241 | + is_scale: true |
| 242 | + - Permute: {} |
| 243 | + batch_size: 1 |
| 244 | + |
| 245 | +TestReader: |
| 246 | + sample_transforms: |
| 247 | + - Decode: {} |
| 248 | + - EvalAffine: |
| 249 | + size: *trainsize |
| 250 | + - NormalizeImage: |
| 251 | + mean: *global_mean |
| 252 | + std: *global_std |
| 253 | + is_scale: true |
| 254 | + - Permute: {} |
| 255 | + batch_size: 1 |
0 commit comments