-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyTeam.py
executable file
·358 lines (302 loc) · 12.1 KB
/
myTeam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# myTeam.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
from captureAgents import CaptureAgent
import random, time, util
from util import nearestPoint
from game import Directions
import numpy as np
import game
#################
# Team creation #
#################
def createTeam(firstIndex, secondIndex, isRed,
first = 'DummyAgent', second = 'DummyAgent'):
"""
This function should return a list of two agents that will form the
team, initialized using firstIndex and secondIndex as their agent
index numbers. isRed is True if the red team is being created, and
will be False if the blue team is being created.
As a potentially helpful development aid, this function can take
additional string-valued keyword arguments ("first" and "second" are
such arguments in the case of this function), which will come from
the --redOpts and --blueOpts command-line arguments to capture.py.
For the nightly contest, however, your team will be created without
any extra arguments, so you should make sure that the default
behavior is what you want for the nightly contest.
"""
# The following line is an example only; feel free to change it.
return [eval(first)(firstIndex), eval(second)(secondIndex)]
##########
# Agents #
##########
class DummyAgent(CaptureAgent):
"""
A Dummy agent to serve as an example of the necessary agent structure.
You should look at baselineTeam.py for more details about how to
create an agent as this is the bare minimum.
"""
def registerInitialState(self, gameState):
"""
This method handles the initial setup of the
agent to populate useful fields (such as what team
we're on).
A distanceCalculator instance caches the maze distances
between each pair of positions, so your agents can use:
self.distancer.getDistance(p1, p2)
IMPORTANT: This method may run for at most 15 seconds.
"""
'''
Make sure you do not delete the following line. If you would like to
use Manhattan distances instead of maze distances in order to save
on initialization time, please take a look at
CaptureAgent.registerInitialState in captureAgents.py.
'''
self.name='Steven'
self.gamma=0.95
self.reward=None
self.time=0
self.alpha=0.00001
self.old_q = None
self.epsilon = 0.2
self.weights = np.loadtxt('weights.txt')#np.random.normal(0,0.1,3)
self.start = gameState.getAgentPosition(self.index)
CaptureAgent.registerInitialState(self, gameState)
self.old_features = None
'''
Your initialization code goes here, if you need any.
'''
def update_reward(self,gameState):
self.reward=0
self.reward+=10*self.getScore(gameState)
self.reward-=len(self.getFood(gameState).asList())
self.reward +=len(self.getFoodYouAreDefending(gameState).asList())
self.reward-=0.1*self.time
def update_weights(self,Q_plus):
try:
self.weights=self.weights+self.alpha*(Q_plus-self.old_q)*self.old_features
except:
a=0
np.savetxt('weights.txt', self.weights)
def chooseAction(self, gameState):
"""
Picks among actions randomly.
"""
self.weights = np.loadtxt('weights.txt')
self.time+=1
actions = gameState.getLegalActions(self.index)
# You can profile your evaluation time by uncommenting these lines
# start = time.time()
values = [self.evaluate(gameState, a) for a in actions]
# print('eval time for agent %d: %.4f' % (self.index, time.time() - start))
if np.random.random() > self.epsilon:
Q = max(values)
bestActions = [a for a, v in zip(actions, values) if v == Q]
else:
Q = np.random.choice(values)
bestActions = [a for a, v in zip(actions, values) if v == Q]
foodLeft = len(self.getFood(gameState).asList())
action=random.choice(bestActions)
if self.time>1:
self.update_reward(gameState)
Q_plus=self.reward+self.gamma*Q
self.update_weights(Q_plus)
self.old_q=Q
self.old_features=self.getFeatures(gameState,action)
#self.old_features.normalize()
self.old_features=np.array((list(self.old_features.values())))
if gameState.isOver():
a=0
if self.final(gameState):
a=0
#self.old_features=np.array((list(self.getFeatures(gameState,action).values())))
return action
def finalUpdate(self,winner):
self.weights = np.loadtxt('weights.txt')
if winner=='Red':
if self.red:
Q_plus=+100
else:
Q_plus= -100
self.update_weights(Q_plus)
elif winner=='Blue':
if self.red:
Q_plus = -100
else:
Q_plus = +100
self.update_weights(Q_plus)
else:
self.update_weights(-10)
np.savetxt('weights.txt',self.weights)
def getSuccessor(self, gameState, action):
"""
Finds the next successor which is a grid position (location tuple).
"""
successor = gameState.generateSuccessor(self.index, action)
pos = successor.getAgentState(self.index).getPosition()
if pos != nearestPoint(pos):
# Only half a grid position was covered
return successor.generateSuccessor(self.index, action)
else:
return successor
def evaluate(self, gameState, action):
"""
Computes a linear combination of features and feature weights
"""
features = self.getFeatures(gameState, action)
weights = self.getWeights(gameState, action)
return features * weights
def getFeatures(self, gameState, action):
features = util.Counter()
successor = self.getSuccessor(gameState, action)
foodList = self.getFood(successor).asList()
otherfood= self.getFoodYouAreDefending(successor).asList()
features['successorScore'] = -len(foodList)+len(otherfood) # self.getScore(successor)
#features['scared']=successor.getAgentState(self.index).scaredTimer
if successor.getAgentState(self.index).isPacman:
features['ghost']=0
else:
features['ghost']=1
team=self.getTeam(successor)
if self.index != team[0]:
mate_idx=team[0]
else:
mate_idx=team[1]
if successor.getAgentState(mate_idx).isPacman:
features['mate_ghost']=0
else:
features['mate_ghost']=1
#features['scared_mate']=successor.getAgentState(mate_idx).scaredTimer
dists=successor.getAgentDistances()
opponents=self.getOpponents(successor)
features['distance1']=dists[opponents[0]]
#features['scared_0']=successor.getAgentState(opponents[0]).scaredTimer
#features['scared_1'] = successor.getAgentState(opponents[0]).scaredTimer
if successor.getAgentState(opponents[0]).isPacman:
features['pac1']=1
else:
features['pac1']=0
if successor.getAgentState(opponents[1]).isPacman:
features['pac2']=1
else:
features['pac2']=0
features['distance2']=dists[opponents[1]]
# Compute distance to the nearest food
if len(foodList) > 0: # This should always be True, but better safe than sorry
myPos = successor.getAgentState(self.index).getPosition()
minDistance = min([self.getMazeDistance(myPos, food) for food in foodList])
features['distanceToFood'] = minDistance
else:
features['distanceToFood'] = -1
# Computes distance to invaders we can see
enemies = [successor.getAgentState(i) for i in self.getOpponents(successor)]
invaders = [a for a in enemies if a.isPacman]
#features['numInvaders'] = len(invaders)
features['bias'] = 1
return features
def getWeights(self, gameState, action):
return {'successorScore': self.weights[0],'ghost':self.weights[1], 'mate_ghost':self.weights[2],
'distance1': self.weights[3], 'distance2': self.weights[4],
'pac1': self.weights[5], 'pac2': self.weights[6],
'distanceToFood': self.weights[7],'bias': self.weights[-1]}
'''
You should change this in your own agent.
'''
class ReflexCaptureAgent(CaptureAgent):
def registerInitialState(self, gameState):
"""
This method handles the initial setup of the
agent to populate useful fields (such as what team
we're on).
A distanceCalculator instance caches the maze distances
between each pair of positions, so your agents can use:
self.distancer.getDistance(p1, p2)
IMPORTANT: This method may run for at most 15 seconds.
"""
'''
Make sure you do not delete the following line. If you would like to
use Manhattan distances instead of maze distances in order to save
on initialization time, please take a look at
CaptureAgent.registerInitialState in captureAgents.py.
'''
self.name='Alfredo'
self.start=gameState.getAgentPosition(self.index)
CaptureAgent.registerInitialState(self, gameState)
def chooseAction(self, gameState):
"""
Picks among the actions with the highest Q(s,a).
"""
actions = gameState.getLegalActions(self.index)
# You can profile your evaluation time by uncommenting these lines
# start = time.time()
values = [self.evaluate(gameState, a) for a in actions]
# print('eval time for agent %d: %.4f' % (self.index, time.time() - start))
maxValue = max(values)
bestActions = [a for a, v in zip(actions, values) if v == maxValue]
foodLeft = len(self.getFood(gameState).asList())
if foodLeft <= 2:
bestDist = 9999
for action in actions:
successor = self.getSuccessor(gameState, action)
pos2 = successor.getAgentPosition(self.index)
dist = self.getMazeDistance(self.start,pos2)
if dist < bestDist:
bestAction = action
bestDist = dist
return bestAction
return random.choice(bestActions)
def getSuccessor(self, gameState, action):
"""
Finds the next successor which is a grid position (location tuple).
"""
successor = gameState.generateSuccessor(self.index, action)
pos = successor.getAgentState(self.index).getPosition()
if pos != nearestPoint(pos):
# Only half a grid position was covered
return successor.generateSuccessor(self.index, action)
else:
return successor
def evaluate(self, gameState, action):
"""
Computes a linear combination of features and feature weights
"""
features = self.getFeatures(gameState, action)
weights = self.getWeights(gameState, action)
return features * weights
class DefensiveReflexAgent(ReflexCaptureAgent):
"""
A reflex agent that keeps its side Pacman-free. Again,
this is to give you an idea of what a defensive agent
could be like. It is not the best or only way to make
such an agent.
"""
def getFeatures(self, gameState, action):
features = util.Counter()
successor = self.getSuccessor(gameState, action)
myState = successor.getAgentState(self.index)
myPos = myState.getPosition()
# Computes whether we're on defense (1) or offense (0)
features['onDefense'] = 1
if myState.isPacman: features['onDefense'] = 0
# Computes distance to invaders we can see
enemies = [successor.getAgentState(i) for i in self.getOpponents(successor)]
invaders = [a for a in enemies if a.isPacman and a.getPosition() != None]
features['numInvaders'] = len(invaders)
if len(invaders) > 0:
dists = [self.getMazeDistance(myPos, a.getPosition()) for a in invaders]
features['invaderDistance'] = min(dists)
if action == Directions.STOP: features['stop'] = 1
rev = Directions.REVERSE[gameState.getAgentState(self.index).configuration.direction]
if action == rev: features['reverse'] = 1
return features
def getWeights(self, gameState, action):
return {'numInvaders': -1000, 'onDefense': 100, 'invaderDistance': -10, 'stop': -100, 'reverse': -2}