-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize.py
240 lines (196 loc) · 8.82 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
from typing import List
import torch.distributions
import torchvision
import numpy as np
from torch import Tensor
from torch.utils.data import DataLoader
from analysis import get_field_from_config
from datasets import get_test_dataloader
import util
import wandb
from models import model_database
from models.autoencoder_base import AutoEncoder, GaussianAutoEncoder
import matplotlib.pyplot as plt
from PIL import Image
from sklearn.manifold import TSNE
from models.model_database import get_model
from util import load_best_model
from datetime import date
import traceback
def get_z_values(n_vals: int = 20, border: float = 0.10, latent_dims: int = 2):
''' Get z values needed to plot a grid of samples from the latent space. Grid over two dimensional z. '''
lin_vals = torch.linspace(1-border,border, steps=n_vals)
lin_vals_1 = torch.linspace(border,1-border, steps=n_vals)
icdf_vals = torch.cartesian_prod(*([lin_vals, lin_vals_1]))
distr = torch.distributions.normal.Normal(torch.zeros(latent_dims), torch.ones(latent_dims))
z_vals = distr.icdf(icdf_vals)
return torch.index_select(z_vals, 1, torch.tensor([1,0]))
def plot_latent_space_2d(model: AutoEncoder, test_loader, device, equal_axes=True, max_val=None, colorbar=True,
add_prior_flow=False):
'''
:param model:
:param test_loader:
:param device:
:param max_val: max value from 0 in x and y direction: sometimes we see outliers
:return:
'''
arr = np.zeros([len(test_loader.dataset), 3])
n_added = 0
for image_batch, image_labels in test_loader:
image_batch = util.dequantize(image_batch)
image_batch = image_batch.to(device)
with torch.no_grad():
output = model.encode(image_batch)
if isinstance(output, tuple):
mu, _ = model.encode(image_batch)
else:
mu = output
if add_prior_flow:
mu, _ = model.prior_bijector.inverse(mu)
arr[n_added:n_added + len(image_batch), :2] = mu.cpu().detach().numpy()
arr[n_added:n_added + len(image_batch), 2] = image_labels
n_added += len(image_batch)
plt.rcParams['axes.axisbelow'] = True
fig = plt.figure(figsize=(6, 6), dpi=300)
ax = fig.gca()
# plt.style.use('seaborn')
scat = plt.scatter(arr[:, 0], arr[:, 1], s=10, c=arr[:, 2], cmap=plt.get_cmap('tab10'), alpha=0.8, rasterized=True,
linewidths=0)
# cb = plt.colorbar(scat, spacing='uniform', ticks=np.linspace(0, 9, 10))
ax.set_facecolor('lavender')
ax.grid(visible=True, which='major', axis='both', color='w', )
# sns.set_theme()
if equal_axes:
plt.axis('equal')
if max_val is not None:
# cur_min_x, cur_max_x = np.min(arr[:, 0]), np.max(arr[:, 0])
# cur_min_y, cur_max_y = np.min(arr[:, 1]), np.max(arr[:, 1])
#
# cur_min = min(cur_min_x, cur_min_y)
# cur_max = max(cur_max_x, cur_max_y)
#
# if cur_min < -max_val or cur_max > max_val:
# lim = max_val
# else:
# lim = max(-1 * cur_min, cur_max)
lim = max_val
# plt.ylim((max(cur_min_x, -max_val), min(cur_max_x, max_val))) # Why are these reversed?
# plt.xlim((max(cur_min_y, -max_val), min(cur_max_y, max_val)))
plt.ylim((-lim, lim)) # Why are these reversed?
plt.xlim((-lim, lim))
else:
left, right = plt.xlim()
max_lr = max(-left, right)
plt.xlim((-max_lr, max_lr))
if colorbar:
plt.clim(-0.5, 10 - 0.5)
cb = plt.colorbar(scat, ticks=range(0, 10), spacing='uniform')
cb.ax.tick_params(length=0)
return fig
def plot_samples(model: AutoEncoder, img_shape: List = [1, 28, 28], n_rows: int = 10, n_cols: int = 10,
batch_size: int = 100, temperature: int = 1, padding: int = 1):
'''
Function to plot a grid of samples given a model.
'''
n_samples = n_rows * n_cols
arr = torch.zeros((n_samples, *img_shape))
n_filled = 0
while n_filled < n_samples:
n_to_sample = min(batch_size, n_samples - n_filled)
with torch.no_grad():
arr[n_filled:n_filled + n_to_sample] = model.sample(n_to_sample, temperature=temperature).cpu().detach()
n_filled += n_to_sample
arr = np.clip(arr, 0., 1.)
grid = torchvision.utils.make_grid(arr, padding=padding, pad_value=0., nrow=n_cols, normalize=False)
img = torchvision.transforms.ToPILImage()(grid)
return img
def plot_reconstructions(model: GaussianAutoEncoder, test_loader: DataLoader, device: torch.device,
img_shape: List = [1, 28, 28], n_rows: int = 4, n_cols: int = 4, skip_batches=0,
padding: int = 1):
'''
Function to plot a grid (size n_rows x n_rows) of reconstructions given a model. Each roww of original samples is
followed by a row of reconstructions.
'''
n_images = n_rows * n_cols
arr = torch.zeros((n_images, *img_shape))
cur_row = 0
iter_test_loader = iter(test_loader)
n_images_filled = 0
batches_skipped = 0
while cur_row < n_rows:
while batches_skipped <= skip_batches:
image_batch, _ = next(iter_test_loader)
batches_skipped += 1
batch_idx = 0
n_imgs_in_batch_left = image_batch.shape[0]
while n_imgs_in_batch_left >= n_cols and cur_row < n_rows:
n_imgs_in_batch_left -= n_cols # We use the first n_cols images of the batch
row_batch = image_batch[batch_idx:batch_idx + n_cols]
arr[n_images_filled:n_images_filled + n_cols] = row_batch
batch_idx += n_cols
n_images_filled += n_cols
row_batch = util.dequantize(row_batch)
row_batch = row_batch.to(device)
with torch.no_grad():
z = model.encode(row_batch)
if isinstance(z, tuple):
z = z[0]
reconstruction = model.decode(z)
# NAE returns a single value, VAEs will return mu and sigma
if isinstance(reconstruction, tuple):
reconstruction = reconstruction[0]
reconstruction = reconstruction.cpu().detach()
arr[n_images_filled:n_images_filled + n_cols] = reconstruction
n_images_filled += n_cols
cur_row += 2 # We filled two rows
arr = np.clip(arr, 0., 1.)
grid = torchvision.utils.make_grid(arr, padding=padding, pad_value=0., nrow=n_cols, normalize=False)
img = torchvision.transforms.ToPILImage()(grid)
return img
def plot_noisy_reconstructions(model: GaussianAutoEncoder, image_batch: Tensor, device: torch.device,
noise_distribution: torch.distributions.Distribution,
img_shape: List = [1, 28, 28], n_rows: int = 6, n_cols: int = 6):
'''
Function to plot a grid (size n_rows x n_rows) of reconstructions given a model. Following row structure:
1) image with noise 2) denoised image 3) original image
'''
n_images = n_rows * n_cols
arr = torch.zeros((n_images, *img_shape))
assert n_rows % 3 == 0
assert n_images <= image_batch.shape[0]
cur_row = 0
n_images_filled = 0
n_images_out_of_batch = 0
while cur_row < n_rows:
n_imgs_in_batch_left = image_batch.shape[0]
while n_imgs_in_batch_left >= n_cols and cur_row < n_rows:
n_imgs_in_batch_left -= n_cols # We use the first n_cols images of the batch
row_batch = image_batch[n_images_out_of_batch:n_images_out_of_batch + n_cols]
n_images_out_of_batch += n_cols
noisy_batch = torch.clone(row_batch).detach()
noise = noise_distribution.sample()[:n_cols] # What would be faster: this or reinitializing a
# distribution of proper size each time?
noisy_batch += noise
noisy_batch = torch.clamp(noisy_batch, 0., 1.)
# Fill noisy images
arr[n_images_filled:n_images_filled + n_cols] = noisy_batch
n_images_filled += n_cols
noisy_batch = noisy_batch.to(device)
with torch.no_grad():
z = model.encode(noisy_batch)
if isinstance(z, tuple):
z = z[0]
reconstruction = model.decode(z)
reconstruction = reconstruction.cpu().detach()
# Fill reconstructions
arr[n_images_filled:n_images_filled + n_cols] = reconstruction
n_images_filled += n_cols
# Fill originals
arr[n_images_filled:n_images_filled + n_cols] = row_batch
n_images_filled += n_cols
cur_row += 3 # We filled three rows
arr = np.clip(arr, 0., 1.)
grid = torchvision.utils.make_grid(arr, padding=1, pad_value=0., nrow=n_cols)
img = torchvision.transforms.ToPILImage()(grid)
return img