-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdncnnrn.py
58 lines (42 loc) · 1.55 KB
/
dncnnrn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from tensorflow.keras import Model
from tensorflow.keras.initializers import he_uniform
from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU
class DnCNNRN(Model):
def __init__(self, depth=8):
super(DnCNNRN, self).__init__()
# Initial conv + relu (same as in DnCNN)
self.conv = Conv2D(64, 3, padding='same', kernel_initializer=he_uniform())
self.relu = ReLU()
# Use 8 ResNet-inspired blocks (16 layers)
self.rn_layers = [BasicBlock() for i in range(depth)]
# Final conv
self.conv_final = Conv2D(1, 3, padding='same', kernel_initializer=he_uniform())
def call(self, x):
out = self.conv(x)
out = self.relu(out)
for layer in self.rn_layers:
out = layer(out)
return x - self.conv_final(out)
class BasicBlock(Model):
def __init__(self):
# One ResNet block is:
# conv1 - bn1 - relu
# conv2 - bn2
# residual connection
# relu
super(BasicBlock, self).__init__()
self.conv1 = Conv2D(64, 3, padding='same', kernel_initializer=he_uniform())
self.bn1 = BatchNormalization()
self.relu = ReLU()
self.conv2 = Conv2D(64, 3, padding='same', kernel_initializer=he_uniform())
self.bn2 = BatchNormalization()
def call(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += identity
out = self.relu(out)
return out