-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults_loader.py
100 lines (88 loc) · 3.13 KB
/
results_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import pickle
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import sem
import numpy as np
'''sps = ['mean_field',
'multivariate_normal',
'small_iaf',
'large_iaf',
'normalizing_program_mean_field',
'normalizing_program_multivariate_normal',
'normalizing_program_large_iaf',
'normalizing_program_highway_flow']'''
sps = [
#'gated_normalizing_program_iaf',
#'mean_field',
#'multivariate_normal',
#'asvi',
# 'iaf',
'normalizing_program_mean_field',
#'normalizing_program_iaf',
#'normalizing_program_multivariate_normal',
#'normalizing_program_highway_flow',
'gated_normalizing_program_mean_field',
#'gated_normalizing_program_multivariate_normal',
#'gated_normalizing_program_iaf',
]
root_dir='results'
results_dict = {}
for model in os.listdir(root_dir):
if model == 'radon':
continue
if model == 'lorenz_smoothing_r':
a = 0
model_dir=f'{root_dir}/{model}'
results_dict[model] = {}
for surrogate_posterior in os.listdir(model_dir):
if surrogate_posterior == 'normalizing_program_iaf':
a = 0
results_dict[model][surrogate_posterior]={}
surrogate_posterior_dir = f'{model_dir}/{surrogate_posterior}'
reps = []
for rep in os.listdir(surrogate_posterior_dir):
if 'checkpoints' in rep:
continue
try:
with open(f'{surrogate_posterior_dir}/{rep}', 'rb') as handle:
reps.append(pickle.load(handle))
except:
a = 0
df = pd.DataFrame(reps)
results_dict[model][surrogate_posterior]['elbo']= df.elbo
results_dict[model][surrogate_posterior]['fkl'] = df.fkl
for k, models in results_dict.items():
print(f'{k}')
#bold_idx = np.argmin([models[s]["elbo"].mean() for s in sps])
bold_idx = 100
print("& -ELBO")
for i, surrogate_posterior in enumerate(sps):
f = ''
if i == bold_idx:
f += f' & $\\boldsymbol{{{models[surrogate_posterior]["elbo"].mean():.3f} \\pm {models[surrogate_posterior]["elbo"].sem():.3f}}}$'
else:
f += f' & ${models[surrogate_posterior]["elbo"].mean():.3f} \\pm {models[surrogate_posterior]["elbo"].sem():.3f}$'
print(f)
#bold_idx = np.argmax([models[s]["fkl"].mean() for s in sps])
bold_idx=100
print("& FKL")
for i, surrogate_posterior in enumerate(sps):
fkl_mean = models[surrogate_posterior]["fkl"].mean()
fkl_sem = models[surrogate_posterior]["fkl"].sem()
f = ''
if i == bold_idx:
if np.abs(fkl_mean) >= 1e4:
fkl_mean = np.format_float_scientific(fkl_mean, precision=2)
fkl_sem = np.format_float_scientific(fkl_sem, precision=2)
f += f' & $\\boldsymbol{{{fkl_mean} \\pm {fkl_sem}}}$'
else:
f += f' & $\\boldsymbol{{{fkl_mean:.3f} \\pm {fkl_sem:.3f}}}$'
else:
if np.abs(fkl_mean) >= 1e4:
fkl_mean = np.format_float_scientific(fkl_mean, precision=2)
fkl_sem = np.format_float_scientific(fkl_sem, precision=2)
f += f' & ${fkl_mean} \\pm {fkl_sem}$'
else:
f += f' & ${fkl_mean:.3f} \\pm {fkl_sem:.3f}$'
print(f)