-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurrogate_posteriors.py
448 lines (368 loc) · 17.8 KB
/
surrogate_posteriors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import tensorflow as tf
import tensorflow_probability as tfp
from flows_bijectors import build_iaf_bijector, build_real_nvp_bijector, \
make_splines, ActivationNormalization
from gate_bijector import GateBijector, GateBijectorForNormal
from mixture_of_gaussian_bijector import MixtureOfGaussians, InverseMixtureOfGaussians
from tensorflow_probability.python.internal import prefer_static as ps
import numpy as np
tfd = tfp.distributions
tfb = tfp.bijectors
tfe = tfp.experimental
tfp_util = tfp.util
# Global dict (DANGEROUS)
residual_fraction_vars = {}
def get_residual_fraction(dist):
dist_name = dist.parameters['name']
if dist_name not in residual_fraction_vars:
# print("CREATING VARIABLE")
# print(f'{dist_name}')
bij = tfb.Chain([tfb.Sigmoid(), tfb.Scale(100)])
residual_fraction_vars[dist_name] = tfp.util.TransformedVariable(0.999,
bijector=bij,
name='residual_fraction')
return residual_fraction_vars[dist_name]
# todo: broken with radon, probably need to fix sample and/or independent
stdnormal_bijector_fns = {
tfd.Gamma: lambda d: tfd.ApproxGammaFromNormal(d.concentration,
d._rate_parameter()),
tfd.Normal: lambda d: tfb.Shift(d.loc)(tfb.Scale(d.scale)),
tfd.HalfNormal: lambda d: tfb.Softplus()(tfb.Scale(d.scale)),
tfd.MultivariateNormalDiag: lambda d: tfb.Shift(d.loc)(tfb.Scale(d.scale)),
tfd.MultivariateNormalTriL: lambda d: tfb.Shift(d.loc)(
tfb.ScaleTriL(d.scale_tril)),
tfd.TransformedDistribution: lambda d: d.bijector(
_bijector_from_stdnormal(d.distribution)),
tfd.Uniform: lambda d: tfb.Shift(d.low)(
tfb.Scale(d.high - d.low)(tfb.NormalCDF())),
tfd.Sample: lambda d: _bijector_from_stdnormal_sample(d.distribution),
tfd.Independent: lambda d: _bijector_from_stdnormal(d.distribution),
tfd.MixtureSameFamily: lambda d: tfb.Chain([InverseMixtureOfGaussians(d), tfb.NormalCDF()])
}
gated_stdnormal_bijector_fns = {
tfd.Gamma: lambda d: tfd.ApproxGammaFromNormal(d.concentration,
d._rate_parameter()),
# using specific bijector for normal, use next line for generic one
tfd.Normal: lambda d: GateBijectorForNormal(d.loc, d.scale, get_residual_fraction(d)),
# tfd.Normal: lambda d: GateBijector(tfb.Shift(d.loc)(tfb.Scale(d.scale)),
# get_residual_fraction(d)),
tfd.HalfNormal: lambda d: GateBijector(tfb.Softplus()(tfb.Scale(d.scale)),
get_residual_fraction(d)),
tfd.MultivariateNormalDiag: lambda d: GateBijector(
tfb.Shift(d.loc)(tfb.Scale(d.scale)), get_residual_fraction(d)),
tfd.MultivariateNormalTriL: lambda d: GateBijector(tfb.Shift(d.loc)(
tfb.ScaleTriL(d.scale_tril)), get_residual_fraction(d)),
tfd.TransformedDistribution: lambda d: d.bijector(
_gated_bijector_from_stdnormal(d.distribution)),
tfd.Uniform: lambda d: GateBijector(tfb.Shift(d.low)(
tfb.Scale(d.high - d.low)(tfb.NormalCDF())), get_residual_fraction(d)),
tfd.Sample: lambda d: _gated_bijector_from_stdnormal_sample(d.distribution),
tfd.Independent: lambda d: _gated_bijector_from_stdnormal(d.distribution),
tfd.MixtureSameFamily: lambda d: GateBijector(tfb.Chain([InverseMixtureOfGaussians(d), tfb.NormalCDF()]), get_residual_fraction(d))
}
stdnormal_bijector_sample_fns = {
tfd.Normal: lambda d: tfb.Shift(tf.reshape(d.loc, [-1, 1]))(
tfb.Scale(tf.reshape(d.scale, [-1, 1])))
}
gated_stdnormal_bijector_sample_fns = {
tfd.Normal: lambda d: GateBijector(tfb.Shift(tf.reshape(d.loc, [-1, 1]))(
tfb.Scale(tf.reshape(d.scale, [-1, 1]))), get_residual_fraction(d))
}
def _bijector_from_stdnormal_sample(dist):
fn = stdnormal_bijector_sample_fns[type(dist)]
return fn(dist)
def _gated_bijector_from_stdnormal_sample(dist):
fn = gated_stdnormal_bijector_sample_fns[type(dist)]
return fn(dist)
def _bijector_from_stdnormal(dist):
fn = stdnormal_bijector_fns[type(dist)]
return fn(dist)
def _gated_bijector_from_stdnormal(dist):
fn = gated_stdnormal_bijector_fns[type(dist)]
return fn(dist)
class AutoFromNormal(tfd.joint_distribution._DefaultJointBijector):
def __init__(self, dist):
return super().__init__(dist, bijector_fn=_bijector_from_stdnormal)
class GatedAutoFromNormal(tfd.joint_distribution._DefaultJointBijector):
def __init__(self, dist):
return super().__init__(dist, bijector_fn=_gated_bijector_from_stdnormal)
def _get_prior_matching_bijectors_and_event_dims(prior):
event_shape = prior.event_shape_tensor()
flat_event_shape = tf.nest.flatten(event_shape)
flat_event_size = tf.nest.map_structure(tf.reduce_prod, flat_event_shape)
try:
event_space_bijector = prior.experimental_default_event_space_bijector()
except:
event_space_bijector = None
split_bijector = tfb.Split(flat_event_size)
unflatten_bijector = tfb.Restructure(
tf.nest.pack_sequence_as(
event_shape, range(len(flat_event_shape))))
reshape_bijector = tfb.JointMap(
tf.nest.map_structure(tfb.Reshape, flat_event_shape,
[x[tf.newaxis] for x in flat_event_size]))
if event_space_bijector:
prior_matching_bijectors = [event_space_bijector, unflatten_bijector,
reshape_bijector, split_bijector]
else:
prior_matching_bijectors = [unflatten_bijector,
reshape_bijector, split_bijector]
dtype = tf.nest.flatten(prior.dtype)[0]
return event_shape, flat_event_shape, flat_event_size, int(
tf.reduce_sum(flat_event_size)), dtype, prior_matching_bijectors
def _mean_field(prior):
event_shape, flat_event_shape, flat_event_size, ndims, dtype, prior_matching_bijectors = _get_prior_matching_bijectors_and_event_dims(
prior)
base_dist = tfd.Independent(tfd.Normal(loc=tf.Variable(tf.reshape(
[0. for _ in
range(int(tf.reduce_sum(flat_event_size)))], -1)),
scale=tfp.util.TransformedVariable(tf.reshape(
[1.
for _ in
range(int(tf.reduce_sum(flat_event_size)))],
-1), bijector=tfb.Softplus())), 1)
return tfd.TransformedDistribution(
distribution=base_dist,
bijector=tfb.Chain(prior_matching_bijectors))
def _multivariate_normal(prior):
def make_trainable_linear_operator_tril(
dim,
scale_initializer=1e-1,
diag_bijector=None,
diag_shift=1e-5,
dtype=tf.float32):
"""Build a trainable lower triangular linop."""
scale_tril_bijector = tfb.FillScaleTriL(
diag_bijector, diag_shift=diag_shift)
flat_initial_scale = tf.zeros((dim * (dim + 1) // 2,), dtype=dtype)
initial_scale_tril = tfb.FillScaleTriL(
diag_bijector=tfb.Identity(), diag_shift=scale_initializer)(
flat_initial_scale)
return tf.linalg.LinearOperatorLowerTriangular(
tril=tfp_util.TransformedVariable(
initial_scale_tril, bijector=scale_tril_bijector))
event_shape, flat_event_shape, flat_event_size, ndims, dtype, prior_matching_bijectors = _get_prior_matching_bijectors_and_event_dims(
prior)
base_dist = tfd.Sample(
tfd.Normal(tf.zeros([], dtype), 1.), sample_shape=[ndims])
op = make_trainable_linear_operator_tril(ndims)
prior_matching_bijectors.extend(
[tfb.Shift(tf.Variable(tf.zeros([ndims], dtype=dtype))),
tfb.ScaleMatvecLinearOperator(op)])
return tfd.TransformedDistribution(base_dist,
tfb.Chain(prior_matching_bijectors))
def _asvi(prior):
return tfe.vi.build_asvi_surrogate_posterior(prior)
def _normalizing_flows(prior, flow_name, flow_params):
event_shape, flat_event_shape, flat_event_size, ndims, dtype, prior_matching_bijectors = _get_prior_matching_bijectors_and_event_dims(
prior)
base_distribution = tfd.Sample(
tfd.Normal(tf.zeros([], dtype=dtype), 1.), sample_shape=[ndims])
if flow_name == 'iaf':
flow_params['dtype'] = dtype
flow_params['ndims'] = ndims
flow_bijector = build_iaf_bijector(**flow_params)
if flow_name == 'maf':
flow_params['dtype'] = dtype
flow_params['ndims'] = ndims
flow_bijector = build_iaf_bijector(**flow_params)
if flow_name == 'real_nvp':
# flow_params['dtype'] = dtype
flow_params['ndims'] = ndims
flow_bijector = build_real_nvp_bijector(**flow_params)
if flow_name == 'splines':
flow_bijector = make_splines(**flow_params)
nf_surrogate_posterior = tfd.TransformedDistribution(
base_distribution,
bijector=tfb.Chain(prior_matching_bijectors +# scale_bijector +
flow_bijector
))
return nf_surrogate_posterior
def _normalizing_program(prior, backbone_name, flow_params):
bijector = AutoFromNormal(prior)
backbone_surrogate_posterior = get_surrogate_posterior(prior,
surrogate_posterior_name=backbone_name,
flow_params=flow_params)
return tfd.TransformedDistribution(
distribution=backbone_surrogate_posterior,
bijector=bijector
)
def _sandwich_maf_normalizing_program(prior, num_layers_per_flow=1,
use_bn=False):
event_shape, flat_event_shape, flat_event_size, ndims, dtype, prior_matching_bijectors = _get_prior_matching_bijectors_and_event_dims(
prior)
base_distribution = tfd.Sample(
tfd.Normal(tf.zeros([], dtype=dtype), 1.), sample_shape=[ndims])
flow_params = {'activation_fn': tf.nn.relu}
flow_params['dtype'] = tf.float32
flow_params['ndims'] = ndims
flow_params['num_flow_layers'] = num_layers_per_flow
flow_params['num_hidden_units'] = 512
flow_params['is_iaf'] = False
flow_bijector_pre = build_iaf_bijector(**flow_params)
flow_bijector_post = build_iaf_bijector(**flow_params)
make_swap = lambda: tfb.Permute(ps.range(ndims - 1, -1, -1))
normalizing_program = AutoFromNormal(prior)
prior_matching_bijectors = tfb.Chain(prior_matching_bijectors)
if use_bn:
bijector = tfb.Chain([prior_matching_bijectors,
flow_bijector_post[0],
tfb.Invert(ActivationNormalization(1,
is_image=False)),
tfb.Chain([tfb.Invert(prior_matching_bijectors),
normalizing_program,
prior_matching_bijectors]),
make_swap(),
tfb.Invert(ActivationNormalization(1,
is_image=False)),
flow_bijector_pre[0],
tfb.Invert(ActivationNormalization(1,
is_image=False))
])
else:
bijector = tfb.Chain([prior_matching_bijectors,
flow_bijector_post[0],
tfb.Chain([tfb.Invert(prior_matching_bijectors),
normalizing_program,
prior_matching_bijectors]),
make_swap(),
flow_bijector_pre[0]
])
backbone_surrogate_posterior = tfd.TransformedDistribution(
distribution=base_distribution,
bijector=bijector
)
return backbone_surrogate_posterior
def _sandwich_splines_normalizing_program(prior, flow_params):
event_shape, flat_event_shape, flat_event_size, ndims, dtype, prior_matching_bijectors = _get_prior_matching_bijectors_and_event_dims(
prior)
base_distribution = tfd.Sample(
tfd.Normal(tf.zeros([], dtype=dtype), 1.), sample_shape=[ndims])
flow_bijector_pre = make_splines(**flow_params)
flow_bijector_post = make_splines(**flow_params)
make_swap = lambda: tfb.Permute(ps.range(ndims - 1, -1, -1))
normalizing_program = AutoFromNormal(prior)
prior_matching_bijectors = tfb.Chain(prior_matching_bijectors)
if flow_params['use_bn']:
bijector = tfb.Chain([prior_matching_bijectors,
tfb.Chain(flow_bijector_post),
tfb.Invert(ActivationNormalization(1,
is_image=False)),
tfb.Chain([tfb.Invert(prior_matching_bijectors),
normalizing_program,
prior_matching_bijectors]),
make_swap(),
tfb.Invert(ActivationNormalization(1,
is_image=False)),
tfb.Chain(flow_bijector_pre)])
else:
bijector = tfb.Chain([prior_matching_bijectors,
tfb.Chain(flow_bijector_post),
tfb.Chain([tfb.Invert(prior_matching_bijectors),
normalizing_program,
prior_matching_bijectors]),
make_swap(),
tfb.Chain(flow_bijector_pre)])
backbone_surrogate_posterior = tfd.TransformedDistribution(
distribution=base_distribution,
bijector=bijector
)
return backbone_surrogate_posterior
def bottom_np_maf(prior, flow_params={}):
event_shape, flat_event_shape, flat_event_size, ndims, dtype, prior_matching_bijectors = _get_prior_matching_bijectors_and_event_dims(
prior)
base_distribution = tfd.Sample(
tfd.Normal(tf.zeros([], dtype=dtype), 1.), sample_shape=[ndims])
flow_params['activation_fn'] = tf.nn.relu
flow_params['dtype'] = dtype
flow_params['ndims'] = ndims
flow_params['num_flow_layers'] = 1
if 'num_hidden_units' not in flow_params:
flow_params['num_hidden_units'] = 512
flow_params['is_iaf'] = False
flow_bijector_pre = build_iaf_bijector(**flow_params)
flow_bijector_post = build_iaf_bijector(**flow_params)
normalizing_program = AutoFromNormal(prior)
prior_matching_bijectors = tfb.Chain(prior_matching_bijectors)
bijector = tfb.Chain([
prior_matching_bijectors,
flow_bijector_post[0],
flow_bijector_pre[0],
tfb.Chain([tfb.Invert(prior_matching_bijectors),
normalizing_program,
prior_matching_bijectors])
])
backbone_surrogate_posterior = tfd.TransformedDistribution(
distribution=base_distribution,
bijector=bijector
)
return backbone_surrogate_posterior
def _gated_normalizing_program(prior, backbone_name, flow_params):
'''for d in prior._get_single_sample_distributions():
if type(d) == tfd.Independent or type(d) == tfd.Sample:
d.distribution._residual_fraction = tfp.util.TransformedVariable(0.98, bijector=tfb.Sigmoid())
else:
d._residual_fraction = tfp.util.TransformedVariable(0.98, bijector=tfb.Sigmoid())'''
backbone_surrogate_posterior = get_surrogate_posterior(prior,
surrogate_posterior_name=backbone_name,
flow_params=flow_params)
'''for d in backbone_surrogate_posterior._get_single_sample_distributions():
if type(d) == tfd.Independent or type(d) == tfd.Sample:
d.distribution._residual_fraction = tfp.util.TransformedVariable(0.98, bijector=tfb.Sigmoid())
else:
d._residual_fraction = tfp.util.TransformedVariable(0.98, bijector=tfb.Sigmoid())'''
bijector = GatedAutoFromNormal(prior)
return tfd.TransformedDistribution(
distribution=backbone_surrogate_posterior,
bijector=bijector
)
def get_surrogate_posterior(prior, surrogate_posterior_name,
backnone_name=None, flow_params={}):
# Needed to reset the gates if running several experiments sequentially
global residual_fraction_vars
residual_fraction_vars = {}
if surrogate_posterior_name == 'mean_field':
return _mean_field(prior)
elif surrogate_posterior_name == 'multivariate_normal':
return _multivariate_normal(prior)
elif surrogate_posterior_name == "asvi":
return _asvi(prior)
elif surrogate_posterior_name == "iaf":
flow_params['num_flow_layers'] = 2
flow_params['num_hidden_units'] = 512
if 'activation_fn' not in flow_params:
flow_params['activation_fn'] = tf.math.tanh
return _normalizing_flows(prior, flow_name='iaf', flow_params=flow_params)
elif surrogate_posterior_name == "maf":
if 'num_flow_layers' not in flow_params:
flow_params['num_flow_layers'] = 2
if 'num_hidden_units' not in flow_params:
flow_params['num_hidden_units'] = 512
flow_params['is_iaf'] = False
if 'activation_fn' not in flow_params:
flow_params['activation_fn'] = tf.math.tanh
return _normalizing_flows(prior, flow_name='maf', flow_params=flow_params)
elif surrogate_posterior_name == "real_nvp":
flow_params = {
'num_flow_layers': 2,
'num_hidden_units': 512
}
return _normalizing_flows(prior, flow_name='real_nvp',
flow_params=flow_params)
elif surrogate_posterior_name == "splines":
return _normalizing_flows(prior, flow_name='splines',
flow_params=flow_params)
elif surrogate_posterior_name == "normalizing_program":
if backnone_name == 'iaf':
flow_params['activation_fn'] = tf.nn.relu
elif backnone_name == 'maf':
flow_params['activation_fn'] = tf.nn.relu
return _normalizing_program(prior, backbone_name=backnone_name,
flow_params=flow_params)
elif surrogate_posterior_name == "gated_normalizing_program":
if backnone_name == 'iaf':
flow_params['activation_fn'] = tf.nn.relu
elif backnone_name == 'maf':
flow_params['activation_fn'] = tf.nn.relu
return _gated_normalizing_program(prior, backbone_name=backnone_name,
flow_params=flow_params)