-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigs.py
55 lines (50 loc) · 1.45 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Hyper parameters.
class DotDict(dict):
"""Dot notation access to dictionary attributes."""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
cartpole = DotDict({
'batch_size': 32,
'checkpoint_steps': 1000,
'eps_start': 1,
'eps_end': 0.01,
'eps_decay_steps': 100,
'eps_decay_rate': 0.9,
'eval_steps': 100,
'gamma': 0.9, # If we do n-step update, gamma needs to be updated too.
'hidden_layer_size': 32,
'learning_rate_initial': 0.01,
'learning_rate_final': 0.0001,
'learning_rate_decay_rate': 0.1,
'learning_rate_decay_step': 1000,
'max_step': 300,
'num_hidden_layers': 2,
'optimizer_epsilon': 0.00002,
'replay_buffer_size': 100000,
'training_steps': 100000,
'target_network_update_steps': 100,
})
atm = DotDict({
'batch_size': 32,
'checkpoint_steps': 1000,
'earliest_start_idx': 200,
'eps_start': 0.3,
'eps_end': 0.02,
'eps_decay_steps': 100,
'eps_decay_rate': 0.95,
'eval_steps': 100,
'gamma': 0.95, # If we do n-step update, gamma needs to be updated too.
'hidden_layer_size': 500,
'history': 60, # Given data from last 60 days.
'learning_rate_initial': 0.0001,
'learning_rate_final': 0.000001,
'learning_rate_decay_rate': 0.1,
'learning_rate_decay_step': 1000,
'max_step': 30, # Max episode length.
'num_hidden_layers': 3,
'optimizer_epsilon': 0.00002,
'replay_buffer_size': 100000,
'training_steps': 100000,
'target_network_update_steps': 100,
})