|
| 1 | +# Copyright 2025 The Orbax Authors. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +"""Defines `PyTorchLayout` for loading PyTorch checkpoint files.""" |
| 16 | + |
| 17 | +import asyncio |
| 18 | +import dataclasses |
| 19 | +import io |
| 20 | +import os |
| 21 | +import pickle |
| 22 | +from typing import Any, Awaitable |
| 23 | +import zipfile |
| 24 | + |
| 25 | +from absl import logging |
| 26 | +import jax |
| 27 | +import numpy as np |
| 28 | +from orbax.checkpoint._src.path import async_path |
| 29 | +from orbax.checkpoint.experimental.v1._src.layout import checkpoint_layout |
| 30 | +from orbax.checkpoint.experimental.v1._src.metadata import types as metadata_types |
| 31 | +from orbax.checkpoint.experimental.v1._src.path import types |
| 32 | + |
| 33 | + |
| 34 | +CheckpointLayout = checkpoint_layout.CheckpointLayout |
| 35 | +InvalidLayoutError = checkpoint_layout.InvalidLayoutError |
| 36 | +Path = types.Path |
| 37 | + |
| 38 | + |
| 39 | +_PICKLE_FILENAME = "data.pkl" |
| 40 | +_STORAGE_PREFIX = "data" |
| 41 | + |
| 42 | +# Maps torch.dtype to an equivalent numpy dtype. |
| 43 | +_TORCH_TO_NP_DTYPE = { |
| 44 | + "torch.float16": np.float16, |
| 45 | + "torch.float32": np.float32, |
| 46 | + "torch.float64": np.float64, |
| 47 | + # JAX's numpy supports bfloat16, but we use a string to avoid a direct |
| 48 | + # dependency on a specific numpy implementation having np.bfloat16. |
| 49 | + "torch.bfloat16": "bfloat16", |
| 50 | + "torch.uint8": np.uint8, |
| 51 | + "torch.int8": np.int8, |
| 52 | + "torch.int16": np.int16, |
| 53 | + "torch.int32": np.int32, |
| 54 | + "torch.int64": np.int64, |
| 55 | + "torch.bool": np.bool_, |
| 56 | + "torch.complex64": np.complex64, |
| 57 | + "torch.complex128": np.complex128, |
| 58 | + # Map quantized types to their numpy equivalents. Note that this loses |
| 59 | + # quantization information (scale and zero-point). |
| 60 | + "torch.qint8": np.int8, |
| 61 | + "torch.quint8": np.uint8, |
| 62 | + "torch.qint32": np.int32, |
| 63 | +} |
| 64 | + |
| 65 | + |
| 66 | +def _parse_storage_pid(pid: Any) -> tuple[Any, str]: |
| 67 | + """Parses a PyTorch storage persistent ID. |
| 68 | +
|
| 69 | + Args: |
| 70 | + pid: The persistent id. |
| 71 | +
|
| 72 | + Returns: |
| 73 | + A tuple of (storage_type, key). |
| 74 | +
|
| 75 | + Raises: |
| 76 | + pickle.UnpicklingError: If the pid is not a valid storage pid. |
| 77 | + """ |
| 78 | + # pid is typically a tuple like: |
| 79 | + # ('storage', torch.LongStorage, '0', 'cpu', 8) |
| 80 | + if not isinstance(pid, tuple) or pid[0] != "storage": |
| 81 | + raise pickle.UnpicklingError(f"Unsupported persistent id object: {pid}") |
| 82 | + storage_type, key = pid[1], pid[2] |
| 83 | + return storage_type, key |
| 84 | + |
| 85 | + |
| 86 | +class CustomTorchUnpickler(pickle.Unpickler): |
| 87 | + """An unpickler that can handle PyTorch's 'storage' persistent IDs. |
| 88 | +
|
| 89 | + by looking up data in an externally provided dictionary of bytes. |
| 90 | + """ |
| 91 | + |
| 92 | + def __init__( |
| 93 | + self, |
| 94 | + file: io.BytesIO, |
| 95 | + storage_data: dict[str, bytes], |
| 96 | + ): |
| 97 | + super().__init__(file) |
| 98 | + self._storage_data = storage_data |
| 99 | + |
| 100 | + def persistent_load(self, pid: Any) -> Any: |
| 101 | + """Handles persistent load calls encountered during unpickling.""" |
| 102 | + storage_type, key = _parse_storage_pid(pid) |
| 103 | + if key not in self._storage_data: |
| 104 | + raise pickle.UnpicklingError( |
| 105 | + f"Storage key '{key}' not found in checkpoint archive." |
| 106 | + ) |
| 107 | + |
| 108 | + storage_bytes = self._storage_data[key] |
| 109 | + return storage_type.from_buffer(storage_bytes, "little") |
| 110 | + |
| 111 | + |
| 112 | +@dataclasses.dataclass |
| 113 | +class _StorageMetadata: |
| 114 | + """A placeholder for torch.Storage metadata, containing only the dtype.""" |
| 115 | + |
| 116 | + dtype: str |
| 117 | + |
| 118 | + def __init__(self, dtype: str): |
| 119 | + self.dtype = dtype |
| 120 | + |
| 121 | + |
| 122 | +def _rebuild_tensor_as_sds( |
| 123 | + storage: Any, |
| 124 | + storage_offset: int, |
| 125 | + size: tuple[int, ...], |
| 126 | + stride: tuple[int, ...], |
| 127 | + requires_grad: bool = False, |
| 128 | + backward_hooks: Any = (), |
| 129 | +) -> jax.ShapeDtypeStruct: |
| 130 | + """Pickle reduction function to rebuild a tensor as a ShapeDtypeStruct.""" |
| 131 | + del storage_offset, stride, requires_grad, backward_hooks # Unused. |
| 132 | + if not isinstance(storage, _StorageMetadata): |
| 133 | + # This error indicates that the unpickler's persistent_load did not return |
| 134 | + # the expected placeholder. This can happen with unsupported PyTorch |
| 135 | + # versions or corrupted files. |
| 136 | + raise pickle.UnpicklingError( |
| 137 | + "Expected to find _StorageMetadata, but got" |
| 138 | + f" {type(storage).__name__}. This may indicate an unsupported PyTorch" |
| 139 | + " version." |
| 140 | + ) |
| 141 | + if storage.dtype not in _TORCH_TO_NP_DTYPE: |
| 142 | + raise pickle.UnpicklingError( |
| 143 | + f"Unsupported torch dtype for conversion to numpy: {storage.dtype}" |
| 144 | + ) |
| 145 | + numpy_dtype = np.dtype(_TORCH_TO_NP_DTYPE[storage.dtype]) |
| 146 | + return jax.ShapeDtypeStruct(shape=tuple(size), dtype=numpy_dtype) |
| 147 | + |
| 148 | + |
| 149 | +class MetadataUnpickler(pickle.Unpickler): |
| 150 | + """An unpickler that reconstructs tensors as ShapeDtypeStructs.""" |
| 151 | + |
| 152 | + def find_class(self, module: str, name: str) -> Any: |
| 153 | + """Overrides class lookup to intercept tensor creation.""" |
| 154 | + if (module == "torch._utils" and name == "_rebuild_tensor_v2") or ( |
| 155 | + module == "torch" and name == "_rebuild_tensor" |
| 156 | + ): |
| 157 | + return _rebuild_tensor_as_sds |
| 158 | + return super().find_class(module, name) |
| 159 | + |
| 160 | + def persistent_load(self, pid: Any) -> Any: |
| 161 | + """Handles persistent load calls for torch.Storage.""" |
| 162 | + storage_type, _ = _parse_storage_pid(pid) |
| 163 | + # For metadata, we only need the dtype from the storage type. |
| 164 | + return _StorageMetadata(dtype=str(storage_type.dtype)) |
| 165 | + |
| 166 | + |
| 167 | +def _unpickle_metadata_sync(pickle_bytes: bytes) -> Any: |
| 168 | + """Unpickles metadata using MetadataUnpickler.""" |
| 169 | + data_stream = io.BytesIO(pickle_bytes) |
| 170 | + unpickler = MetadataUnpickler(data_stream) |
| 171 | + return unpickler.load() |
| 172 | + |
| 173 | + |
| 174 | +def _read_zip_contents_sync(path: Path) -> tuple[bytes, dict[str, bytes]]: |
| 175 | + """Sync helper for `_read_zip_contents`.""" |
| 176 | + pickle_bytes = None |
| 177 | + storage_data = {} |
| 178 | + with zipfile.ZipFile(path, "r") as zf: |
| 179 | + for name in zf.namelist(): |
| 180 | + if name.endswith(_PICKLE_FILENAME): |
| 181 | + pickle_bytes = zf.read(name) |
| 182 | + elif os.path.basename(os.path.dirname(name)) == _STORAGE_PREFIX: |
| 183 | + storage_id = os.path.basename(name) |
| 184 | + # Accommodate different key formats. Some PyTorch versions may use |
| 185 | + # storage keys with underscores. |
| 186 | + if storage_id.isdigit() or "_" in storage_id: |
| 187 | + storage_data[storage_id] = zf.read(name) |
| 188 | + if pickle_bytes is None: |
| 189 | + raise FileNotFoundError(f"{_PICKLE_FILENAME} not found in {path}") |
| 190 | + return pickle_bytes, storage_data |
| 191 | + |
| 192 | + |
| 193 | +async def _read_zip_contents(path: Path) -> tuple[bytes, dict[str, bytes]]: |
| 194 | + """Reads pickle data and all storage files from a PyTorch zip archive.""" |
| 195 | + return await asyncio.to_thread(_read_zip_contents_sync, path) |
| 196 | + |
| 197 | + |
| 198 | +def _structure_to_numpy(pytorch_data: Any) -> Any: |
| 199 | + """Converts torch.Tensors in pytorch_data to NumPy arrays.""" |
| 200 | + |
| 201 | + def _to_numpy(leaf: Any) -> Any: |
| 202 | + if hasattr(leaf, "numpy"): |
| 203 | + return leaf.numpy() |
| 204 | + return leaf |
| 205 | + |
| 206 | + return jax.tree.map(_to_numpy, pytorch_data) |
| 207 | + |
| 208 | + |
| 209 | +def _load_pytorch_on_device( |
| 210 | + pytorch_data: Any, |
| 211 | + abstract_pytree: Any, |
| 212 | +) -> Any: |
| 213 | + """Loads tensors from pytorch_data into on-device JAX arrays based on abstract_pytree.""" |
| 214 | + |
| 215 | + def _load_leaf(leaf: Any, abstract_leaf: Any) -> jax.Array: |
| 216 | + if not hasattr(leaf, "numpy"): |
| 217 | + raise ValueError( |
| 218 | + "Item in PyTorch checkpoint is not a tensor-like object with a" |
| 219 | + " 'numpy' method or is missing from the checkpoint." |
| 220 | + ) |
| 221 | + |
| 222 | + sharding = abstract_leaf.sharding |
| 223 | + target_shape = abstract_leaf.shape |
| 224 | + target_dtype = abstract_leaf.dtype |
| 225 | + |
| 226 | + device_indices_map = sharding.addressable_devices_indices_map(target_shape) |
| 227 | + device_arrays = [] |
| 228 | + for device in device_indices_map: |
| 229 | + idx = device_indices_map[device] |
| 230 | + shard_tensor = leaf[idx] |
| 231 | + shard_np = shard_tensor.numpy() |
| 232 | + if shard_np.dtype != target_dtype: |
| 233 | + shard_np = shard_np.astype(target_dtype) |
| 234 | + device_arrays.append(jax.device_put(shard_np, device)) |
| 235 | + |
| 236 | + return jax.make_array_from_single_device_arrays( |
| 237 | + target_shape, sharding, device_arrays |
| 238 | + ) |
| 239 | + |
| 240 | + return jax.tree.map(_load_leaf, pytorch_data, abstract_pytree) |
| 241 | + |
| 242 | + |
| 243 | +def _unpickle_structure_sync( |
| 244 | + pickle_bytes: bytes, storage_data: dict[str, bytes] |
| 245 | +) -> Any: |
| 246 | + """Unpickles the structure using CustomTorchUnpickler.""" |
| 247 | + data_stream = io.BytesIO(pickle_bytes) |
| 248 | + unpickler = CustomTorchUnpickler(data_stream, storage_data) |
| 249 | + return unpickler.load() |
| 250 | + |
| 251 | + |
| 252 | +async def _load_pytorch( |
| 253 | + path: Path, abstract_pytree: dict[str, Any] | None = None |
| 254 | +) -> dict[str, Any]: |
| 255 | + """Loads pytorch checkpoint as numpy arrays or sharded jax arrays.""" |
| 256 | + pickle_bytes, storage_data = await _read_zip_contents(path) |
| 257 | + |
| 258 | + pytorch_data = await asyncio.to_thread( |
| 259 | + _unpickle_structure_sync, pickle_bytes, storage_data |
| 260 | + ) |
| 261 | + |
| 262 | + if abstract_pytree is None: |
| 263 | + # Return NumPy arrays. |
| 264 | + restored_pytree = _structure_to_numpy(pytorch_data) |
| 265 | + else: |
| 266 | + # Return on-device JAX arrays. |
| 267 | + restored_pytree = _load_pytorch_on_device(pytorch_data, abstract_pytree) |
| 268 | + |
| 269 | + return {checkpoint_layout.PYTREE_CHECKPOINTABLE_KEY: restored_pytree} |
| 270 | + |
| 271 | + |
| 272 | +class PyTorchLayout(CheckpointLayout): |
| 273 | + """Layout for loading PyTorch checkpoints (.pt, .pth). |
| 274 | +
|
| 275 | + Uses zipfile and a custom unpickler to handle torch.Tensors |
| 276 | + without calling torch.load(). |
| 277 | + """ |
| 278 | + |
| 279 | + def __init__(self, path: Path): |
| 280 | + self._path = path |
| 281 | + |
| 282 | + @property |
| 283 | + def path(self) -> Path: |
| 284 | + """Returns the path of the PyTorch checkpoint file.""" |
| 285 | + return self._path |
| 286 | + |
| 287 | + def _check_zip_structure(self): |
| 288 | + """Sync helper to check zip file contents.""" |
| 289 | + try: |
| 290 | + with zipfile.ZipFile(self._path, "r") as zf: |
| 291 | + if not any(name.endswith(_PICKLE_FILENAME) for name in zf.namelist()): |
| 292 | + raise InvalidLayoutError( |
| 293 | + f"'{self._path}' is not a valid PyTorch zip archive" |
| 294 | + " (missing data.pkl)." |
| 295 | + ) |
| 296 | + except zipfile.BadZipFile as e: |
| 297 | + raise InvalidLayoutError( |
| 298 | + f"'{self._path}' is not a valid ZIP file." |
| 299 | + ) from e |
| 300 | + |
| 301 | + async def validate(self) -> None: |
| 302 | + """Checks if the path is a file and a valid PyTorch ZIP archive.""" |
| 303 | + if not await async_path.is_file(self._path): |
| 304 | + raise InvalidLayoutError(f"Path is not a file: {self._path}") |
| 305 | + if self._path.suffix not in [".pt", ".pth"]: |
| 306 | + logging.warning( |
| 307 | + "File %s lacks .pt or .pth suffix but attempting to " |
| 308 | + "load as PyTorch checkpoint.", |
| 309 | + self._path, |
| 310 | + ) |
| 311 | + try: |
| 312 | + await asyncio.to_thread(self._check_zip_structure) |
| 313 | + except InvalidLayoutError as e: |
| 314 | + raise e |
| 315 | + except OSError as e: |
| 316 | + raise InvalidLayoutError( |
| 317 | + f"Failed to validate {self._path} as PyTorch checkpoint: {e}" |
| 318 | + ) from e |
| 319 | + |
| 320 | + async def validate_pytree(self, checkpointable_name: str | None) -> None: |
| 321 | + """No-op, as PyTorchLayout treats the entire file as the 'pytree' item.""" |
| 322 | + return |
| 323 | + |
| 324 | + async def metadata(self) -> metadata_types.CheckpointMetadata[dict[str, Any]]: |
| 325 | + """Extracts ShapeDtypeStruct metadata without loading tensor data.""" |
| 326 | + pickle_bytes, _ = await _read_zip_contents(self._path) |
| 327 | + metadata_tree = await asyncio.to_thread( |
| 328 | + _unpickle_metadata_sync, pickle_bytes |
| 329 | + ) |
| 330 | + stat_result = await asyncio.to_thread(os.stat, self._path) |
| 331 | + commit_timestamp_nsecs = stat_result.st_mtime_ns |
| 332 | + |
| 333 | + return metadata_types.CheckpointMetadata[dict[str, Any]]( |
| 334 | + metadata={checkpoint_layout.PYTREE_CHECKPOINTABLE_KEY: metadata_tree}, |
| 335 | + commit_timestamp_nsecs=commit_timestamp_nsecs, |
| 336 | + ) |
| 337 | + |
| 338 | + async def load( |
| 339 | + self, |
| 340 | + abstract_checkpointables: dict[str, Any] | None = None, |
| 341 | + ) -> Awaitable[dict[str, Any]]: |
| 342 | + """Loads a PyTorch checkpoint file. |
| 343 | +
|
| 344 | + If abstract_checkpointables are provided, it attempts to load tensors as |
| 345 | + sharded jax.Arrays onto devices. Otherwise, it loads tensors as host |
| 346 | + NumPy arrays. |
| 347 | +
|
| 348 | + Args: |
| 349 | + abstract_checkpointables: An optional PyTree of abstract arrays specifying |
| 350 | + sharding information. |
| 351 | +
|
| 352 | + Returns: |
| 353 | + An awaitable of a dictionary containing the loaded PyTree. |
| 354 | + """ |
| 355 | + abstract_pytree = None |
| 356 | + if abstract_checkpointables: |
| 357 | + abstract_pytree = abstract_checkpointables.get( |
| 358 | + checkpoint_layout.PYTREE_CHECKPOINTABLE_KEY |
| 359 | + ) |
| 360 | + return _load_pytorch(self._path, abstract_pytree) |
0 commit comments