diff --git a/bigframes/bigquery/_operations/ai.py b/bigframes/bigquery/_operations/ai.py index e56292d64f..fd7dafe95f 100644 --- a/bigframes/bigquery/_operations/ai.py +++ b/bigframes/bigquery/_operations/ai.py @@ -58,14 +58,14 @@ def generate( >>> import bigframes.pandas as bpd >>> import bigframes.bigquery as bbq >>> country = bpd.Series(["Japan", "Canada"]) - >>> bbq.ai.generate(("What's the capital city of ", country, " one word only")) - 0 {'result': 'Tokyo\\n', 'full_response': '{"cand... - 1 {'result': 'Ottawa\\n', 'full_response': '{"can... + >>> bbq.ai.generate(("What's the capital city of ", country, " one word only")) # doctest: +SKIP + 0 {'result': 'Tokyo', 'full_response': '{"cand... + 1 {'result': 'Ottawa', 'full_response': '{"can... dtype: struct>, status: string>[pyarrow] - >>> bbq.ai.generate(("What's the capital city of ", country, " one word only")).struct.field("result") - 0 Tokyo\\n - 1 Ottawa\\n + >>> bbq.ai.generate(("What's the capital city of ", country, " one word only")).struct.field("result") # doctest: +SKIP + 0 Tokyo + 1 Ottawa Name: result, dtype: string You get structured output when the `output_schema` parameter is set: