-
Notifications
You must be signed in to change notification settings - Fork 545
/
Copy pathopencl_runtime_api.cc
1649 lines (1504 loc) · 67 KB
/
opencl_runtime_api.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* opencl_runtime_api.cc
*
* Copyright © 2009 by Tor M. Aamodt and the University of British Columbia,
* Vancouver, BC V6T 1Z4, All Rights Reserved.
*
* THIS IS A LEGAL DOCUMENT BY DOWNLOADING GPGPU-SIM, YOU ARE AGREEING TO THESE
* TERMS AND CONDITIONS.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* NOTE: The files libcuda/cuda_runtime_api.c and src/cuda-sim/cuda-math.h
* are derived from the CUDA Toolset available from http://www.nvidia.com/cuda
* (property of NVIDIA). The files benchmarks/BlackScholes/ and
* benchmarks/template/ are derived from the CUDA SDK available from
* http://www.nvidia.com/cuda (also property of NVIDIA). The files from
* src/intersim/ are derived from Booksim (a simulator provided with the
* textbook "Principles and Practices of Interconnection Networks" available
* from http://cva.stanford.edu/books/ppin/). As such, those files are bound by
* the corresponding legal terms and conditions set forth separately (original
* copyright notices are left in files from these sources and where we have
* modified a file our copyright notice appears before the original copyright
* notice).
*
* Using this version of GPGPU-Sim requires a complete installation of CUDA
* which is distributed seperately by NVIDIA under separate terms and
* conditions. To use this version of GPGPU-Sim with OpenCL requires a
* recent version of NVIDIA's drivers which support OpenCL.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the University of British Columbia nor the names of
* its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* 4. This version of GPGPU-SIM is distributed freely for non-commercial use only.
*
* 5. No nonprofit user may place any restrictions on the use of this software,
* including as modified by the user, by any other authorized user.
*
* 6. GPGPU-SIM was developed primarily by Tor M. Aamodt, Wilson W. L. Fung,
* Ali Bakhoda, George L. Yuan, at the University of British Columbia,
* Vancouver, BC V6T 1Z4
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#ifdef OPENGL_SUPPORT
#define GL_GLEXT_PROTOTYPES
#include <GL/gl.h>
#endif
#define __CUDA_RUNTIME_API_H__
#include "host_defines.h"
#include "builtin_types.h"
#if (CUDART_VERSION < 8000)
#include "__cudaFatFormat.h"
#endif
#include "../src/abstract_hardware_model.h"
#include "../src/cuda-sim/cuda-sim.h"
#include "../src/cuda-sim/ptx_loader.h"
#include "../src/cuda-sim/ptx_ir.h"
#include "../src/gpgpusim_entrypoint.h"
#include "../src/gpgpu-sim/gpu-sim.h"
#include "../src/gpgpu-sim/shader.h"
//# define __my_func__ __PRETTY_FUNCTION__
# if defined __cplusplus ? __GNUC_PREREQ (2, 6) : __GNUC_PREREQ (2, 4)
# define __my_func__ __func__
# else
# if defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L
# define __my_func__ __my_func__
# else
# define __my_func__ ((__const char *) 0)
# endif
# endif
#define CL_USE_DEPRECATED_OPENCL_1_0_APIS
#include <CL/cl.h>
#include <map>
#include <string>
/* Defined in src/cuda-sim/ptx_loader.h. Unused for OpenCL for now. */
int no_of_ptx=0;
static void setErrCode(cl_int *errcode_ret, cl_int err_code) {
if ( errcode_ret ) {
*errcode_ret = err_code;
}
}
struct _cl_context {
_cl_context( cl_device_id gpu );
cl_device_id get_first_device();
cl_mem CreateBuffer(
cl_mem_flags flags,
size_t size ,
void * host_ptr,
cl_int * errcode_ret );
cl_mem lookup_mem( cl_mem m );
private:
unsigned m_uid;
cl_device_id m_gpu;
static unsigned sm_context_uid;
std::map<void*/*host_ptr*/,cl_mem> m_hostptr_to_cl_mem;
std::map<cl_mem/*device ptr*/,cl_mem> m_devptr_to_cl_mem;
};
struct _cl_device_id {
_cl_device_id(gpgpu_sim* gpu) {m_id = 0; m_next = NULL; m_gpgpu=gpu;}
struct _cl_device_id *next() { return m_next; }
gpgpu_sim *the_device() const { return m_gpgpu; }
private:
unsigned m_id;
gpgpu_sim *m_gpgpu;
struct _cl_device_id *m_next;
};
struct _cl_command_queue
{
_cl_command_queue( cl_context context, cl_device_id device, cl_command_queue_properties properties )
{
m_valid = true;
m_context = context;
m_device = device;
m_properties = properties;
}
bool is_valid() { return m_valid; }
cl_context get_context() { return m_context; }
cl_device_id get_device() { return m_device; }
cl_command_queue_properties get_properties() { return m_properties; }
private:
bool m_valid;
cl_context m_context;
cl_device_id m_device;
cl_command_queue_properties m_properties;
};
struct _cl_mem {
_cl_mem( cl_mem_flags flags, size_t size , void *host_ptr, cl_int *errcode_ret, cl_device_id gpu );
cl_mem device_ptr();
void* host_ptr();
bool is_on_host() { return m_is_on_host; }
private:
bool m_is_on_host;
size_t m_device_ptr;
void *m_host_ptr;
cl_mem_flags m_flags;
size_t m_size;
};
struct _cl_event {
private:
cl_ulong start;
cl_ulong cmd_end;
size_t refcount;
public:
_cl_event() : start(0), cmd_end(0), refcount(1) {}
cl_ulong getCmdEnd(void);
void setCmdEnd(cl_ulong);
cl_ulong getStart(void);
void setStart(cl_ulong);
void retain(void);
bool release(void);
};
struct pgm_info {
std::string m_source;
std::string m_asm;
class symbol_table *m_symtab;
std::map<std::string,function_info*> m_kernels;
};
struct _cl_program {
_cl_program( cl_context context,
cl_uint count,
const char ** strings,
const size_t * lengths );
void Build(const char *options);
cl_kernel CreateKernel( const char *kernel_name, cl_int *errcode_ret );
cl_context get_context() { return m_context; }
char *get_ptx();
size_t get_ptx_size();
private:
cl_context m_context;
std::map<cl_uint,pgm_info> m_pgm;
static unsigned m_kernels_compiled;
};
struct _cl_kernel {
_cl_kernel( cl_program prog, const char* kernel_name, class function_info *kernel_impl );
void SetKernelArg(
cl_uint arg_index,
size_t arg_size,
const void * arg_value );
cl_int bind_args( gpgpu_ptx_sim_arg_list_t &arg_list );
std::string name() const { return m_kernel_name; }
size_t get_workgroup_size(cl_device_id device);
cl_program get_program() { return m_prog; }
class function_info *get_implementation() { return m_kernel_impl; }
private:
unsigned m_uid;
static unsigned sm_context_uid;
cl_program m_prog;
std::string m_kernel_name;
struct arg_info {
size_t m_arg_size;
const void *m_arg_value;
};
std::map<unsigned, arg_info> m_args;
class function_info *m_kernel_impl;
};
struct _cl_platform_id {
static const unsigned m_uid = 0;
};
struct _cl_platform_id g_gpgpu_sim_platform_id;
void gpgpusim_exit()
{
abort();
}
void gpgpusim_opencl_warning( const char* func, unsigned line, const char *desc )
{
printf("GPGPU-Sim OpenCL API: Warning (%s:%u) ** %s\n", func,line,desc);
}
void gpgpusim_opencl_error( const char* func, unsigned line, const char *desc )
{
printf("GPGPU-Sim OpenCL API: ERROR (%s:%u) ** %s\n", func,line,desc);
gpgpusim_exit();
}
_cl_kernel::_cl_kernel( cl_program prog, const char* kernel_name, class function_info *kernel_impl )
{
m_uid = sm_context_uid++;
m_kernel_name = std::string(kernel_name);
m_kernel_impl = kernel_impl;
m_prog = prog;
}
void _cl_kernel::SetKernelArg(
cl_uint arg_index,
size_t arg_size,
const void * arg_value )
{
arg_info arg;
arg.m_arg_size = arg_size;
arg.m_arg_value = arg_value;
m_args[arg_index] = arg;
}
cl_int _cl_kernel::bind_args( gpgpu_ptx_sim_arg_list_t &arg_list )
{
size_t offset = 0;
assert( arg_list.empty() );
unsigned k=0;
std::map<unsigned, arg_info>::iterator i;
for( i = m_args.begin(); i!=m_args.end(); i++ ) {
if( i->first != k )
return CL_INVALID_KERNEL_ARGS;
arg_info arg = i->second;
const symbol *sym = m_kernel_impl->get_arg(i->first);
const type_info_key &t = sym->type()->get_key();
int align = (t.get_alignment_spec() == -1) ? arg.m_arg_size : t.get_alignment_spec();
if( offset % align )
offset += (align - (offset % align));
gpgpu_ptx_sim_arg param( arg.m_arg_value, arg.m_arg_size, offset );
arg_list.push_front( param );
offset += arg.m_arg_size;
k++;
}
return CL_SUCCESS;
}
#define min(a,b) ((a<b)?(a):(b))
size_t _cl_kernel::get_workgroup_size(cl_device_id device)
{
unsigned nregs = ptx_kernel_nregs( m_kernel_impl );
unsigned result_regs = (unsigned)-1;
if( nregs > 0 )
result_regs = device->the_device()->num_registers_per_core() / ((nregs+3)&~3);
unsigned result = device->the_device()->threads_per_core();
result = min(result, result_regs);
return (size_t)result;
}
cl_mem _cl_mem::device_ptr()
{
cl_mem result = (cl_mem)(void*)m_device_ptr;
return result;
}
void* _cl_mem::host_ptr()
{
return m_host_ptr;
}
_cl_mem::_cl_mem(
cl_mem_flags flags,
size_t size ,
void * host_ptr,
cl_int * errcode_ret,
cl_device_id gpu )
{
setErrCode( errcode_ret, CL_SUCCESS );
m_is_on_host = false;
m_flags = flags;
m_size = size;
m_host_ptr = host_ptr;
m_device_ptr = 0;
if( (flags & (CL_MEM_USE_HOST_PTR|CL_MEM_COPY_HOST_PTR)) && host_ptr == NULL ) {
setErrCode( errcode_ret, CL_INVALID_HOST_PTR );
return;
}
if( (flags & CL_MEM_COPY_HOST_PTR) && (flags & CL_MEM_USE_HOST_PTR) ) {
setErrCode( errcode_ret, CL_INVALID_VALUE );
return;
}
if( flags & CL_MEM_ALLOC_HOST_PTR ) {
if( host_ptr )
gpgpusim_opencl_error(__my_func__,__LINE__," CL_MEM_ALLOC_HOST_PTR -- not yet supported/tested.\n");
m_host_ptr = malloc(size);
}
if( flags & (CL_MEM_USE_HOST_PTR|CL_MEM_ALLOC_HOST_PTR) ) {
m_is_on_host = true;
} else {
m_is_on_host = false;
}
if( !(flags & (CL_MEM_USE_HOST_PTR|CL_MEM_ALLOC_HOST_PTR)) ) {
// if not allocating on host, then allocate GPU memory and make a copy
m_device_ptr = (size_t) gpu->the_device()->gpu_malloc(size);
if( host_ptr )
gpu->the_device()->memcpy_to_gpu( m_device_ptr, host_ptr, size );
}
}
cl_ulong _cl_event::getCmdEnd( void )
{
return cmd_end;
}
void _cl_event::setCmdEnd( cl_ulong e )
{
cmd_end = e;
}
cl_ulong _cl_event::getStart( void )
{
return start;
}
void _cl_event::setStart( cl_ulong s )
{
start = s;
}
void _cl_event::retain( void )
{
refcount++;
}
bool _cl_event::release( void )
{
return ((--refcount) <= 0);
}
_cl_context::_cl_context( struct _cl_device_id *gpu )
{
m_uid = sm_context_uid++;
m_gpu = gpu;
}
cl_device_id _cl_context::get_first_device()
{
return m_gpu;
}
cl_mem _cl_context::CreateBuffer(
cl_mem_flags flags,
size_t size ,
void * host_ptr,
cl_int * errcode_ret )
{
if( host_ptr && (m_hostptr_to_cl_mem.find(host_ptr) != m_hostptr_to_cl_mem.end()) ) {
printf("GPGPU-Sim OpenCL API: WARNING ** clCreateBuffer - buffer already created for this host variable\n");
}
cl_mem result = new _cl_mem(flags,size,host_ptr,errcode_ret,m_gpu);
m_devptr_to_cl_mem[result->device_ptr()] = result;
if( host_ptr )
m_hostptr_to_cl_mem[host_ptr] = result;
if( result->device_ptr() )
return (cl_mem) result->device_ptr();
else
return (cl_mem) host_ptr;
}
cl_mem _cl_context::lookup_mem( cl_mem m )
{
std::map<cl_mem/*device ptr*/,cl_mem>::iterator i=m_devptr_to_cl_mem.find(m);
if( i == m_devptr_to_cl_mem.end() ) {
void *t = (void*)m;
std::map<void*/*host_ptr*/,cl_mem>::iterator j = m_hostptr_to_cl_mem.find(t);
if( j == m_hostptr_to_cl_mem.end() )
return NULL;
else
return j->second;
} else {
return i->second;
}
}
unsigned _cl_program::m_kernels_compiled = 0;
_cl_program::_cl_program( cl_context context,
cl_uint count,
const char ** strings,
const size_t * lengths )
{
m_context = context;
for( cl_uint i=0; i<count; i++ ) {
unsigned len;
if(lengths != NULL and lengths[i] > 0)
len = lengths[i];
else
len = strlen(strings[i]);
char *tmp = (char*)malloc(len+1);
memcpy(tmp,strings[i],len);
tmp[len] = 0;
m_pgm[m_kernels_compiled].m_source = tmp;
++m_kernels_compiled;
free(tmp);
}
}
static pgm_info *sg_info;
void register_ptx_function( const char *name, function_info *impl )
{
sg_info->m_kernels[name] = impl;
}
void ptxinfo_addinfo()
{
ptxinfo_opencl_addinfo( sg_info->m_kernels );
}
void _cl_program::Build(const char *options)
{
printf("GPGPU-Sim OpenCL API: compiling OpenCL kernels...\n");
std::map<cl_uint,pgm_info>::iterator i;
for( i = m_pgm.begin(); i!= m_pgm.end(); i++ ) {
pgm_info &info=i->second;
sg_info = &info;
unsigned source_num=i->first;
char ptx_fname[1024];
char *use_extracted_ptx = getenv("PTX_SIM_USE_PTX_FILE");
if( use_extracted_ptx == NULL ) {
char *nvopencl_libdir = getenv("NVOPENCL_LIBDIR");
const std::string gpgpu_opencl_path_str = std::string(getenv("GPGPUSIM_ROOT"))
+ "/build/" + std::string(getenv("GPGPUSIM_CONFIG"));
bool error = false;
if( nvopencl_libdir == NULL ) {
printf("GPGPU-Sim OpenCL API: Please set your NVOPENCL_LIBDIR environment variable to\n"
" the location of NVIDIA's libOpenCL.so file on your system.\n");
error = true;
}
if( getenv("GPGPUSIM_ROOT") == NULL || getenv("GPGPUSIM_CONFIG") == NULL ) {
fprintf(stderr,"GPGPU-Sim OpenCL API: Please set your GPGPUSIM_ROOT environment variable\n");
fprintf(stderr," to point to the location of your GPGPU-Sim installation\n");
error = true;
}
if( error )
exit(1);
char cl_fname[1024];
const char *source = info.m_source.c_str();
// call wrapper
char *ld_library_path_orig = getenv("LD_LIBRARY_PATH");
// create temporary filenames
snprintf(cl_fname,1024,"_cl_XXXXXX");
snprintf(ptx_fname,1024,"_ptx_XXXXXX");
int fd=mkstemp(cl_fname);
close(fd);
fd=mkstemp(ptx_fname);
close(fd);
// write OpenCL source to file
FILE *fp = fopen(cl_fname,"w");
if( fp == NULL ) {
printf("GPGPU-Sim OpenCL API: ERROR ** could not create temporary files required for generating PTX\n");
printf(" Ensure you have write permission to the simulation directory\n");
exit(1);
}
fputs(source,fp);
fclose(fp);
char commandline[1024];
const char *opt = options?options:"";
const char* remote_dir = getenv( "OPENCL_REMOTE_DIRECTORY" );
const char* local_pwd = getenv( "PWD" );
if ( !remote_dir || strncmp( remote_dir, "", 1 ) == 0 ) {
remote_dir = local_pwd;
}
const char* remote_host = getenv( "OPENCL_REMOTE_GPU_HOST" );
if ( remote_host && remote_dir ) {
// create same directory on OpenCL to PTX server
snprintf(commandline,1024,"ssh %s mkdir -p %s", remote_host, remote_dir );
printf("GPGPU-Sim OpenCL API: OpenCL wrapper command line \'%s\'\n", commandline);
fflush(stdout);
int result = system(commandline);
if( result ) { printf("GPGPU-Sim OpenCL API: ERROR (%d)\n", result ); exit(1); }
// copy input OpenCL file to OpenCL to PTX server
snprintf(commandline,1024,"rsync -t %s/%s %s:%s/%s", local_pwd, cl_fname, remote_host, remote_dir, cl_fname );
printf("GPGPU-Sim OpenCL API: OpenCL wrapper command line \'%s\'\n", commandline);
fflush(stdout);
result = system(commandline);
if( result ) { printf("GPGPU-Sim OpenCL API: ERROR (%d)\n", result ); exit(1); }
// copy the nvopencl_wrapper file to the remote server
snprintf(commandline,1024,"rsync -t %s/libopencl/bin/nvopencl_wrapper %s:%s/nvopencl_wrapper", gpgpu_opencl_path_str.c_str(), remote_host, remote_dir );
printf("GPGPU-Sim OpenCL API: OpenCL wrapper command line \'%s\'\n", commandline);
fflush(stdout);
result = system(commandline);
if( result ) { printf("GPGPU-Sim OpenCL API: ERROR (%d)\n", result ); exit(1); }
// convert OpenCL to PTX on remote server
snprintf(commandline,1024,"ssh %s \"export LD_LIBRARY_PATH=%s; %s/nvopencl_wrapper %s/%s %s/%s %s\"",
remote_host, nvopencl_libdir, remote_dir, remote_dir, cl_fname, remote_dir, ptx_fname, opt );
printf("GPGPU-Sim OpenCL API: OpenCL wrapper command line \'%s\'\n", commandline);
fflush(stdout);
result = system(commandline);
if( result ) { printf("GPGPU-Sim OpenCL API: ERROR (%d)\n", result ); exit(1); }
// copy output PTX from OpenCL to PTX server back to simulation directory
snprintf(commandline,1024,"rsync -t %s:%s/%s %s/%s", remote_host, remote_dir, ptx_fname, local_pwd, ptx_fname );
printf("GPGPU-Sim OpenCL API: OpenCL wrapper command line \'%s\'\n", commandline);
fflush(stdout);
result = system(commandline);
if( result ) { printf("GPGPU-Sim OpenCL API: ERROR (%d)\n", result ); exit(1); }
} else {
setenv("LD_LIBRARY_PATH",nvopencl_libdir,1);
snprintf(commandline,1024,"%s/libopencl/bin/nvopencl_wrapper %s %s %s",
gpgpu_opencl_path_str.c_str(), cl_fname, ptx_fname, opt );
printf("GPGPU-Sim OpenCL API: OpenCL wrapper command line \'%s\'\n", commandline);
fflush(stdout);
int result = system(commandline);
setenv("LD_LIBRARY_PATH",ld_library_path_orig,1);
if( result != 0 ) {
printf("GPGPU-Sim OpenCL API: ERROR ** while calling NVIDIA driver to convert OpenCL to PTX (%u)\n",
result );
printf("GPGPU-Sim OpenCL API: LD_LIBRARY_PATH was \'%s\'\n", nvopencl_libdir);
printf("GPGPU-Sim OpenCL API: command line was \'%s\'\n", commandline);
exit(1);
}
}
if( !g_keep_intermediate_files ) {
// clean up files...
snprintf(commandline,1024,"rm -f %s", cl_fname );
int result = system(commandline);
if( result != 0 )
printf("GPGPU-Sim OpenCL API: could not remove temporary files generated while generating PTX\n");
}
} else {
snprintf(ptx_fname,1024,"_%u.ptx", source_num);
}
// read in PTX generated by wrapper
FILE *fp = fopen(ptx_fname,"r");
if( fp == NULL ) {
printf("GPGPU-Sim OpenCL API: ERROR ** could not open PTX file \'%s\' for reading\n", ptx_fname );
if( use_extracted_ptx != NULL )
printf(" Ensure PTX files are in simulation directory.\n");
exit(1);
}
fseek(fp,0,SEEK_END);
unsigned len = ftell(fp);
if( len == 0 ) {
exit(1);
}
fseek(fp,0,SEEK_SET);
char *tmp = (char*)calloc(len+1,1);
fread(tmp,1,len,fp);
fclose(fp);
if( use_extracted_ptx == NULL ) {
// clean up files...
char commandline[1024];
snprintf(commandline,1024,"rm -f %s", ptx_fname );
int result = system(commandline);
if( result != 0 )
printf("GPGPU-Sim OpenCL API: could not remove temporary files generated while generating PTX\n");
// remove any trailing characters from string
while( len > 0 && tmp[len] != '}' ) {
tmp[len] = 0;
len--;
}
}
info.m_asm = tmp;
info.m_symtab = gpgpu_ptx_sim_load_ptx_from_string( tmp, source_num );
gpgpu_ptxinfo_load_from_string( tmp, source_num );
free(tmp);
}
printf("GPGPU-Sim OpenCL API: finished compiling OpenCL kernels.\n");
}
cl_kernel _cl_program::CreateKernel( const char *kernel_name, cl_int *errcode_ret )
{
cl_kernel result = NULL;
class function_info *finfo=NULL;
std::map<cl_uint,pgm_info>::iterator f;
for( f = m_pgm.begin(); f!= m_pgm.end(); f++ ) {
pgm_info &info=f->second;
std::map<std::string,function_info*>::iterator k = info.m_kernels.find(kernel_name);
if( k != info.m_kernels.end() ) {
assert( finfo == NULL ); // kernels with same name in different .cl files
finfo = k->second;
}
}
if( finfo == NULL )
setErrCode( errcode_ret, CL_INVALID_PROGRAM_EXECUTABLE );
else{
result = new _cl_kernel(this,kernel_name,finfo);
setErrCode( errcode_ret, CL_SUCCESS );
}
return result;
}
char *_cl_program::get_ptx()
{
if( m_pgm.empty() ) {
printf("GPGPU-Sim PTX OpenCL API: Cannot get PTX before building program\n");
abort();
}
size_t buffer_length= get_ptx_size();
char *tmp = (char*)calloc(buffer_length + 1,1);
tmp[ buffer_length ] = '\0';
unsigned n=0;
std::map<cl_uint,pgm_info>::iterator p;
for( p=m_pgm.begin(); p != m_pgm.end(); p++ ) {
const char *ptx = p->second.m_asm.c_str();
unsigned len = strlen( ptx );
assert( (n+len) <= buffer_length );
memcpy(tmp+n,ptx,len);
n+=len;
}
assert( n == buffer_length );
return tmp;
}
size_t _cl_program::get_ptx_size()
{
size_t buffer_length=0;
std::map<cl_uint,pgm_info>::iterator p;
for( p=m_pgm.begin(); p != m_pgm.end(); p++ ) {
buffer_length += p->second.m_asm.length();
}
return buffer_length;
}
unsigned _cl_context::sm_context_uid = 0;
unsigned _cl_kernel::sm_context_uid = 0;
class _cl_device_id *GPGPUSim_Init()
{
static _cl_device_id *the_device = NULL;
if( !the_device ) {
gpgpu_sim *the_gpu = gpgpu_ptx_sim_init_perf();
the_device = new _cl_device_id(the_gpu);
}
start_sim_thread(2);
return the_device;
}
void opencl_not_implemented( const char* func, unsigned line )
{
fflush(stdout);
fflush(stderr);
printf("\n\nGPGPU-Sim PTX: Execution error: OpenCL API function \"%s()\" has not been implemented yet.\n"
" [$GPGPUSIM_ROOT/libcuda/%s around line %u]\n\n\n",
func,__FILE__, line );
fflush(stdout);
abort();
}
void opencl_not_finished( const char* func, unsigned line )
{
fflush(stdout);
fflush(stderr);
printf("\n\nGPGPU-Sim PTX: Execution error: OpenCL API function \"%s()\" has not been completed yet.\n"
" [$GPGPUSIM_ROOT/libopencl/%s around line %u]\n\n\n",
func,__FILE__, line );
fflush(stdout);
abort();
}
extern CL_API_ENTRY cl_context CL_API_CALL
clCreateContextFromType(const cl_context_properties * properties,
cl_device_type device_type,
void (*pfn_notify)(const char *, const void *, size_t, void *),
void * user_data,
cl_int * errcode_ret) CL_API_SUFFIX__VERSION_1_0
{
_cl_device_id *gpu = GPGPUSim_Init();
switch (device_type) {
case CL_DEVICE_TYPE_GPU:
case CL_DEVICE_TYPE_ACCELERATOR:
case CL_DEVICE_TYPE_DEFAULT:
case CL_DEVICE_TYPE_ALL:
break; // GPGPU-Sim qualifies as these types of device.
default:
printf("GPGPU-Sim OpenCL API: unsupported device type %lx\n", device_type );
setErrCode( errcode_ret, CL_DEVICE_NOT_FOUND );
return NULL;
break;
}
if( properties != NULL ) {
printf("GPGPU-Sim OpenCL API: do not know how to use properties in %s\n", __my_func__ );
//exit(1); // Temporarily commented out to allow the AMD Sample applications to run.
}
setErrCode( errcode_ret, CL_SUCCESS );
cl_context ctx = new _cl_context(gpu);
return ctx;
}
/***************************** Unimplemented shell functions *******************************************/
extern CL_API_ENTRY cl_program CL_API_CALL
clCreateProgramWithBinary(cl_context /* context */,
cl_uint /* num_devices */,
const cl_device_id * /* device_list */,
const size_t * /* lengths */,
const unsigned char ** /* binaries */,
cl_int * /* binary_status */,
cl_int * /* errcode_ret */) CL_API_SUFFIX__VERSION_1_0 {
opencl_not_finished(__my_func__, __LINE__ );
return cl_program();
}
/*******************************************************************************************************/
extern CL_API_ENTRY cl_context CL_API_CALL
clCreateContext( const cl_context_properties * properties,
cl_uint num_devices,
const cl_device_id *devices,
void (*pfn_notify)(const char *, const void *, size_t, void *),
void * user_data,
cl_int * errcode_ret) CL_API_SUFFIX__VERSION_1_0
{
struct _cl_device_id *gpu = GPGPUSim_Init();
if( properties != NULL ) {
if( properties[0] != CL_CONTEXT_PLATFORM || properties[1] != (cl_context_properties)&g_gpgpu_sim_platform_id ) {
setErrCode( errcode_ret, CL_INVALID_PLATFORM );
return NULL;
}
}
setErrCode( errcode_ret, CL_SUCCESS );
cl_context ctx = new _cl_context(gpu);
return ctx;
}
extern CL_API_ENTRY cl_int CL_API_CALL
clGetContextInfo(cl_context context,
cl_context_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret ) CL_API_SUFFIX__VERSION_1_0
{
if( context == NULL ) return CL_INVALID_CONTEXT;
switch( param_name ) {
case CL_CONTEXT_DEVICES: {
unsigned ngpu=0;
cl_device_id device_id = context->get_first_device();
while ( device_id != NULL ) {
if( param_value )
((cl_device_id*)param_value)[ngpu] = device_id;
device_id = device_id->next();
ngpu++;
}
if( param_value_size_ret ) *param_value_size_ret = ngpu * sizeof(cl_device_id);
break;
}
case CL_CONTEXT_REFERENCE_COUNT:
opencl_not_finished(__my_func__,__LINE__);
break;
case CL_CONTEXT_PROPERTIES:
opencl_not_finished(__my_func__,__LINE__);
break;
default:
opencl_not_finished(__my_func__,__LINE__);
}
return CL_SUCCESS;
}
extern CL_API_ENTRY cl_command_queue CL_API_CALL
clCreateCommandQueue(cl_context context,
cl_device_id device,
cl_command_queue_properties properties,
cl_int * errcode_ret) CL_API_SUFFIX__VERSION_1_0
{
if( !context ) { setErrCode( errcode_ret, CL_INVALID_CONTEXT ); return NULL; }
gpgpusim_opencl_warning(__my_func__,__LINE__, "assuming device_id is in context");
if( (properties & CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE) )
gpgpusim_opencl_warning(__my_func__,__LINE__, "ignoring command queue property");
if( (properties & CL_QUEUE_PROFILING_ENABLE) )
gpgpusim_opencl_warning(__my_func__,__LINE__, "ignoring command queue property");
setErrCode( errcode_ret, CL_SUCCESS );
return new _cl_command_queue(context,device,properties);
}
extern CL_API_ENTRY cl_mem CL_API_CALL
clCreateBuffer(cl_context context,
cl_mem_flags flags,
size_t size ,
void * host_ptr,
cl_int * errcode_ret ) CL_API_SUFFIX__VERSION_1_0
{
if( !context ) { setErrCode( errcode_ret, CL_INVALID_CONTEXT ); return NULL; }
return context->CreateBuffer(flags,size,host_ptr,errcode_ret);
}
extern CL_API_ENTRY cl_program CL_API_CALL
clCreateProgramWithSource(cl_context context,
cl_uint count,
const char ** strings,
const size_t * lengths,
cl_int * errcode_ret) CL_API_SUFFIX__VERSION_1_0
{
if( !context ) { setErrCode( errcode_ret, CL_INVALID_CONTEXT ); return NULL; }
setErrCode( errcode_ret, CL_SUCCESS );
return new _cl_program(context,count,strings,lengths);
}
extern CL_API_ENTRY cl_int CL_API_CALL
clBuildProgram(cl_program program,
cl_uint num_devices,
const cl_device_id * device_list,
const char * options,
void (*pfn_notify)(cl_program /* program */, void * /* user_data */),
void * user_data ) CL_API_SUFFIX__VERSION_1_0
{
if( !program ) return CL_INVALID_PROGRAM;
program->Build(options);
return CL_SUCCESS;
}
extern CL_API_ENTRY cl_kernel CL_API_CALL
clCreateKernel(cl_program program,
const char * kernel_name,
cl_int * errcode_ret) CL_API_SUFFIX__VERSION_1_0
{
if( kernel_name == NULL ) {
setErrCode( errcode_ret, CL_INVALID_KERNEL_NAME );
return NULL;
}
cl_kernel kobj = program->CreateKernel(kernel_name,errcode_ret);
return kobj;
}
extern CL_API_ENTRY cl_int CL_API_CALL
clSetKernelArg(cl_kernel kernel,
cl_uint arg_index,
size_t arg_size,
const void * arg_value ) CL_API_SUFFIX__VERSION_1_0
{
kernel->SetKernelArg(arg_index,arg_size,arg_value);
return CL_SUCCESS;
}
extern CL_API_ENTRY cl_int CL_API_CALL
clEnqueueNDRangeKernel(cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t * global_work_offset,
const size_t * global_work_size,
const size_t * local_work_size,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event) CL_API_SUFFIX__VERSION_1_0
{
int _global_size[3];
int zeros[3] = { 0, 0, 0};
printf("\n\n\n");
char *mode = getenv("PTX_SIM_MODE_FUNC");
if ( mode )
sscanf(mode,"%u", &g_ptx_sim_mode);
printf("GPGPU-Sim OpenCL API: clEnqueueNDRangeKernel '%s' (mode=%s)\n", kernel->name().c_str(),
g_ptx_sim_mode?"functional simulation":"performance simulation");
if ( !work_dim || work_dim > 3 ) return CL_INVALID_WORK_DIMENSION;
size_t _local_size[3];
if( local_work_size != NULL ) {
for ( unsigned d=0; d < work_dim; d++ )
_local_size[d]=local_work_size[d];
} else {
printf("GPGPU-Sim OpenCL API: clEnqueueNDRangeKernel automatic local work size selection:\n");
for ( unsigned d=0; d < work_dim; d++ ) {
if( d==0 ) {
if( global_work_size[d] <= command_queue->get_device()->the_device()->threads_per_core() ) {
_local_size[d] = global_work_size[d];
} else {
// start with the maximum number of thread that a core may hold,
// and decrement by 64 threadsuntil there is a local_work_size
// that can perfectly divide the global_work_size.
unsigned n_thread_per_core = command_queue->get_device()->the_device()->threads_per_core();
size_t local_size_attempt = n_thread_per_core;
while (local_size_attempt > 1 and (n_thread_per_core % 64 == 0)) {
if (global_work_size[d] % local_size_attempt == 0) {
break;
}
local_size_attempt -= 64;
}
if (local_size_attempt == 0) local_size_attempt = 1;
_local_size[d] = local_size_attempt;
}
} else {
_local_size[d] = 1;
}
printf("GPGPU-Sim OpenCL API: clEnqueueNDRangeKernel global_work_size[%u] = %zu\n", d, global_work_size[d] );
printf("GPGPU-Sim OpenCL API: clEnqueueNDRangeKernel local_work_size[%u] = %zu\n", d, _local_size[d] );
}
}
for ( unsigned d=0; d < work_dim; d++ ) {
_global_size[d] = (int)global_work_size[d];
if ( (global_work_size[d] % _local_size[d]) != 0 )
return CL_INVALID_WORK_GROUP_SIZE;
}
if (global_work_offset != NULL){
for ( unsigned d=0; d < work_dim; d++ ) {
if (global_work_offset[d] != 0){
printf("GPGPU-Sim: global id offset is not supported\n");
abort();
}
}
}
assert( global_work_size[0] == _local_size[0] * (global_work_size[0]/_local_size[0]) ); // i.e., we can divide into equal CTAs
dim3 GridDim;
GridDim.x = global_work_size[0]/_local_size[0];
GridDim.y = (work_dim < 2)?1:(global_work_size[1]/_local_size[1]);
GridDim.z = (work_dim < 3)?1:(global_work_size[2]/_local_size[2]);
dim3 BlockDim;
BlockDim.x = _local_size[0];
BlockDim.y = (work_dim < 2)?1:_local_size[1];
BlockDim.z = (work_dim < 3)?1:_local_size[2];
gpgpu_ptx_sim_arg_list_t params;
cl_int err_val = kernel->bind_args(params);
if ( err_val != CL_SUCCESS )
return err_val;
gpgpu_sim *gpu = command_queue->get_device()->the_device();
if ( event ) {
*event = new _cl_event();
event[0]->setStart((gpu_tot_sim_cycle * 1000000) / gpu->shader_clock());
}