-
Notifications
You must be signed in to change notification settings - Fork 546
/
Copy pathabstract_hardware_model.h
1390 lines (1231 loc) · 42.4 KB
/
abstract_hardware_model.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2009-2011, Tor M. Aamodt, Inderpreet Singh,
// The University of British Columbia
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution. Neither the name of
// The University of British Columbia nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
#ifndef ABSTRACT_HARDWARE_MODEL_INCLUDED
#define ABSTRACT_HARDWARE_MODEL_INCLUDED
// Forward declarations
class gpgpu_sim;
class kernel_info_t;
class gpgpu_context;
// Set a hard limit of 32 CTAs per shader [cuda only has 8]
#define MAX_CTA_PER_SHADER 32
#define MAX_BARRIERS_PER_CTA 16
// After expanding the vector input and output operands
#define MAX_INPUT_VALUES 24
#define MAX_OUTPUT_VALUES 8
enum _memory_space_t {
undefined_space = 0,
reg_space,
local_space,
shared_space,
sstarr_space,
param_space_unclassified,
param_space_kernel, /* global to all threads in a kernel : read-only */
param_space_local, /* local to a thread : read-writable */
const_space,
tex_space,
surf_space,
global_space,
generic_space,
instruction_space
};
enum FuncCache {
FuncCachePreferNone = 0,
FuncCachePreferShared = 1,
FuncCachePreferL1 = 2
};
enum AdaptiveCache { FIXED = 0, ADAPTIVE_VOLTA = 1 };
#ifdef __cplusplus
#include <stdio.h>
#include <string.h>
#include <set>
typedef unsigned long long new_addr_type;
typedef unsigned long long cudaTextureObject_t;
typedef unsigned address_type;
typedef unsigned addr_t;
// the following are operations the timing model can see
#define SPECIALIZED_UNIT_NUM 8
#define SPEC_UNIT_START_ID 100
enum uarch_op_t {
NO_OP = -1,
ALU_OP = 1,
SFU_OP,
TENSOR_CORE_OP,
DP_OP,
SP_OP,
INTP_OP,
ALU_SFU_OP,
LOAD_OP,
TENSOR_CORE_LOAD_OP,
TENSOR_CORE_STORE_OP,
STORE_OP,
BRANCH_OP,
BARRIER_OP,
MEMORY_BARRIER_OP,
CALL_OPS,
RET_OPS,
EXIT_OPS,
SPECIALIZED_UNIT_1_OP = SPEC_UNIT_START_ID,
SPECIALIZED_UNIT_2_OP,
SPECIALIZED_UNIT_3_OP,
SPECIALIZED_UNIT_4_OP,
SPECIALIZED_UNIT_5_OP,
SPECIALIZED_UNIT_6_OP,
SPECIALIZED_UNIT_7_OP,
SPECIALIZED_UNIT_8_OP
};
typedef enum uarch_op_t op_type;
enum uarch_bar_t { NOT_BAR = -1, SYNC = 1, ARRIVE, RED };
typedef enum uarch_bar_t barrier_type;
enum uarch_red_t { NOT_RED = -1, POPC_RED = 1, AND_RED, OR_RED };
typedef enum uarch_red_t reduction_type;
enum uarch_operand_type_t { UN_OP = -1, INT_OP, FP_OP };
typedef enum uarch_operand_type_t types_of_operands;
enum special_operations_t {
OTHER_OP,
INT__OP,
INT_MUL24_OP,
INT_MUL32_OP,
INT_MUL_OP,
INT_DIV_OP,
FP_MUL_OP,
FP_DIV_OP,
FP__OP,
FP_SQRT_OP,
FP_LG_OP,
FP_SIN_OP,
FP_EXP_OP
};
typedef enum special_operations_t
special_ops; // Required to identify for the power model
enum operation_pipeline_t {
UNKOWN_OP,
SP__OP,
DP__OP,
INTP__OP,
SFU__OP,
TENSOR_CORE__OP,
MEM__OP,
SPECIALIZED__OP,
};
typedef enum operation_pipeline_t operation_pipeline;
enum mem_operation_t { NOT_TEX, TEX };
typedef enum mem_operation_t mem_operation;
enum _memory_op_t { no_memory_op = 0, memory_load, memory_store };
#include <assert.h>
#include <stdlib.h>
#include <algorithm>
#include <bitset>
#include <list>
#include <map>
#include <vector>
#if !defined(__VECTOR_TYPES_H__)
#include "vector_types.h"
#endif
struct dim3comp {
bool operator()(const dim3 &a, const dim3 &b) const {
if (a.z < b.z)
return true;
else if (a.y < b.y)
return true;
else if (a.x < b.x)
return true;
else
return false;
}
};
void increment_x_then_y_then_z(dim3 &i, const dim3 &bound);
// Jin: child kernel information for CDP
#include "stream_manager.h"
class stream_manager;
struct CUstream_st;
// extern stream_manager * g_stream_manager;
// support for pinned memories added
extern std::map<void *, void **> pinned_memory;
extern std::map<void *, size_t> pinned_memory_size;
class kernel_info_t {
public:
// kernel_info_t()
// {
// m_valid=false;
// m_kernel_entry=NULL;
// m_uid=0;
// m_num_cores_running=0;
// m_param_mem=NULL;
// }
kernel_info_t(dim3 gridDim, dim3 blockDim, class function_info *entry);
kernel_info_t(
dim3 gridDim, dim3 blockDim, class function_info *entry,
std::map<std::string, const struct cudaArray *> nameToCudaArray,
std::map<std::string, const struct textureInfo *> nameToTextureInfo);
~kernel_info_t();
void inc_running() { m_num_cores_running++; }
void dec_running() {
assert(m_num_cores_running > 0);
m_num_cores_running--;
}
bool running() const { return m_num_cores_running > 0; }
bool done() const { return no_more_ctas_to_run() && !running(); }
class function_info *entry() {
return m_kernel_entry;
}
const class function_info *entry() const { return m_kernel_entry; }
size_t num_blocks() const {
return m_grid_dim.x * m_grid_dim.y * m_grid_dim.z;
}
size_t threads_per_cta() const {
return m_block_dim.x * m_block_dim.y * m_block_dim.z;
}
dim3 get_grid_dim() const { return m_grid_dim; }
dim3 get_cta_dim() const { return m_block_dim; }
void increment_cta_id() {
increment_x_then_y_then_z(m_next_cta, m_grid_dim);
m_next_tid.x = 0;
m_next_tid.y = 0;
m_next_tid.z = 0;
}
dim3 get_next_cta_id() const { return m_next_cta; }
unsigned get_next_cta_id_single() const {
return m_next_cta.x + m_grid_dim.x * m_next_cta.y +
m_grid_dim.x * m_grid_dim.y * m_next_cta.z;
}
bool no_more_ctas_to_run() const {
return (m_next_cta.x >= m_grid_dim.x || m_next_cta.y >= m_grid_dim.y ||
m_next_cta.z >= m_grid_dim.z);
}
void increment_thread_id() {
increment_x_then_y_then_z(m_next_tid, m_block_dim);
}
dim3 get_next_thread_id_3d() const { return m_next_tid; }
unsigned get_next_thread_id() const {
return m_next_tid.x + m_block_dim.x * m_next_tid.y +
m_block_dim.x * m_block_dim.y * m_next_tid.z;
}
bool more_threads_in_cta() const {
return m_next_tid.z < m_block_dim.z && m_next_tid.y < m_block_dim.y &&
m_next_tid.x < m_block_dim.x;
}
unsigned get_uid() const { return m_uid; }
std::string name() const;
std::list<class ptx_thread_info *> &active_threads() {
return m_active_threads;
}
class memory_space *get_param_memory() {
return m_param_mem;
}
// The following functions access texture bindings present at the kernel's
// launch
const struct cudaArray *get_texarray(const std::string &texname) const {
std::map<std::string, const struct cudaArray *>::const_iterator t =
m_NameToCudaArray.find(texname);
assert(t != m_NameToCudaArray.end());
return t->second;
}
const struct textureInfo *get_texinfo(const std::string &texname) const {
std::map<std::string, const struct textureInfo *>::const_iterator t =
m_NameToTextureInfo.find(texname);
assert(t != m_NameToTextureInfo.end());
return t->second;
}
private:
kernel_info_t(const kernel_info_t &); // disable copy constructor
void operator=(const kernel_info_t &); // disable copy operator
class function_info *m_kernel_entry;
unsigned m_uid;
// These maps contain the snapshot of the texture mappings at kernel launch
std::map<std::string, const struct cudaArray *> m_NameToCudaArray;
std::map<std::string, const struct textureInfo *> m_NameToTextureInfo;
dim3 m_grid_dim;
dim3 m_block_dim;
dim3 m_next_cta;
dim3 m_next_tid;
unsigned m_num_cores_running;
std::list<class ptx_thread_info *> m_active_threads;
class memory_space *m_param_mem;
public:
// Jin: parent and child kernel management for CDP
void set_parent(kernel_info_t *parent, dim3 parent_ctaid, dim3 parent_tid);
void set_child(kernel_info_t *child);
void remove_child(kernel_info_t *child);
bool is_finished();
bool children_all_finished();
void notify_parent_finished();
CUstream_st *create_stream_cta(dim3 ctaid);
CUstream_st *get_default_stream_cta(dim3 ctaid);
bool cta_has_stream(dim3 ctaid, CUstream_st *stream);
void destroy_cta_streams();
void print_parent_info();
kernel_info_t *get_parent() { return m_parent_kernel; }
private:
kernel_info_t *m_parent_kernel;
dim3 m_parent_ctaid;
dim3 m_parent_tid;
std::list<kernel_info_t *> m_child_kernels; // child kernel launched
std::map<dim3, std::list<CUstream_st *>, dim3comp>
m_cta_streams; // streams created in each CTA
// Jin: kernel timing
public:
unsigned long long launch_cycle;
unsigned long long start_cycle;
unsigned long long end_cycle;
unsigned m_launch_latency;
mutable bool cache_config_set;
unsigned m_kernel_TB_latency; // this used for any CPU-GPU kernel latency and
// counted in the gpu_cycle
};
class core_config {
public:
core_config(gpgpu_context *ctx) {
gpgpu_ctx = ctx;
m_valid = false;
num_shmem_bank = 16;
shmem_limited_broadcast = false;
gpgpu_shmem_sizeDefault = (unsigned)-1;
gpgpu_shmem_sizePrefL1 = (unsigned)-1;
gpgpu_shmem_sizePrefShared = (unsigned)-1;
}
virtual void init() = 0;
bool m_valid;
unsigned warp_size;
// backward pointer
class gpgpu_context *gpgpu_ctx;
// off-chip memory request architecture parameters
int gpgpu_coalesce_arch;
// shared memory bank conflict checking parameters
bool shmem_limited_broadcast;
static const address_type WORD_SIZE = 4;
unsigned num_shmem_bank;
unsigned shmem_bank_func(address_type addr) const {
return ((addr / WORD_SIZE) % num_shmem_bank);
}
unsigned mem_warp_parts;
mutable unsigned gpgpu_shmem_size;
unsigned gpgpu_shmem_sizeDefault;
unsigned gpgpu_shmem_sizePrefL1;
unsigned gpgpu_shmem_sizePrefShared;
unsigned mem_unit_ports;
// texture and constant cache line sizes (used to determine number of memory
// accesses)
unsigned gpgpu_cache_texl1_linesize;
unsigned gpgpu_cache_constl1_linesize;
unsigned gpgpu_max_insn_issue_per_warp;
bool gmem_skip_L1D; // on = global memory access always skip the L1 cache
bool adaptive_cache_config;
};
// bounded stack that implements simt reconvergence using pdom mechanism from
// MICRO'07 paper
const unsigned MAX_WARP_SIZE = 32;
typedef std::bitset<MAX_WARP_SIZE> active_mask_t;
#define MAX_WARP_SIZE_SIMT_STACK MAX_WARP_SIZE
typedef std::bitset<MAX_WARP_SIZE_SIMT_STACK> simt_mask_t;
typedef std::vector<address_type> addr_vector_t;
class simt_stack {
public:
simt_stack(unsigned wid, unsigned warpSize, class gpgpu_sim *gpu);
void reset();
void launch(address_type start_pc, const simt_mask_t &active_mask);
void update(simt_mask_t &thread_done, addr_vector_t &next_pc,
address_type recvg_pc, op_type next_inst_op,
unsigned next_inst_size, address_type next_inst_pc);
const simt_mask_t &get_active_mask() const;
void get_pdom_stack_top_info(unsigned *pc, unsigned *rpc) const;
unsigned get_rp() const;
void print(FILE *fp) const;
void resume(char *fname);
void print_checkpoint(FILE *fout) const;
protected:
unsigned m_warp_id;
unsigned m_warp_size;
enum stack_entry_type { STACK_ENTRY_TYPE_NORMAL = 0, STACK_ENTRY_TYPE_CALL };
struct simt_stack_entry {
address_type m_pc;
unsigned int m_calldepth;
simt_mask_t m_active_mask;
address_type m_recvg_pc;
address_type m_likely_rpc;
unsigned int m_lpos;
unsigned long long m_branch_div_cycle;
stack_entry_type m_type;
simt_stack_entry()
: m_pc(-1),
m_calldepth(0),
m_active_mask(),
m_recvg_pc(-1),
m_likely_rpc(-1),
m_lpos(-1),
m_branch_div_cycle(0),
m_type(STACK_ENTRY_TYPE_NORMAL){};
};
std::vector<simt_stack_entry> m_stack;
class gpgpu_sim *m_gpu;
};
// Let's just upgrade to C++11 so we can use constexpr here...
// start allocating from this address (lower values used for allocating globals
// in .ptx file)
const unsigned long long GLOBAL_HEAP_START = 0xC0000000;
// Volta max shmem size is 96kB
const unsigned long long SHARED_MEM_SIZE_MAX = 96 * (1 << 10);
// Volta max local mem is 16kB
const unsigned long long LOCAL_MEM_SIZE_MAX = 1 << 14;
// Volta Titan V has 80 SMs
const unsigned MAX_STREAMING_MULTIPROCESSORS = 80;
// Max 2048 threads / SM
const unsigned MAX_THREAD_PER_SM = 1 << 11;
// MAX 64 warps / SM
const unsigned MAX_WARP_PER_SM = 1 << 6;
const unsigned long long TOTAL_LOCAL_MEM_PER_SM =
MAX_THREAD_PER_SM * LOCAL_MEM_SIZE_MAX;
const unsigned long long TOTAL_SHARED_MEM =
MAX_STREAMING_MULTIPROCESSORS * SHARED_MEM_SIZE_MAX;
const unsigned long long TOTAL_LOCAL_MEM =
MAX_STREAMING_MULTIPROCESSORS * MAX_THREAD_PER_SM * LOCAL_MEM_SIZE_MAX;
const unsigned long long SHARED_GENERIC_START =
GLOBAL_HEAP_START - TOTAL_SHARED_MEM;
const unsigned long long LOCAL_GENERIC_START =
SHARED_GENERIC_START - TOTAL_LOCAL_MEM;
const unsigned long long STATIC_ALLOC_LIMIT =
GLOBAL_HEAP_START - (TOTAL_LOCAL_MEM + TOTAL_SHARED_MEM);
#if !defined(__CUDA_RUNTIME_API_H__)
#include "builtin_types.h"
struct cudaArray {
void *devPtr;
int devPtr32;
struct cudaChannelFormatDesc desc;
int width;
int height;
int size; // in bytes
unsigned dimensions;
};
#endif
// Struct that record other attributes in the textureReference declaration
// - These attributes are passed thru __cudaRegisterTexture()
struct textureReferenceAttr {
const struct textureReference *m_texref;
int m_dim;
enum cudaTextureReadMode m_readmode;
int m_ext;
textureReferenceAttr(const struct textureReference *texref, int dim,
enum cudaTextureReadMode readmode, int ext)
: m_texref(texref), m_dim(dim), m_readmode(readmode), m_ext(ext) {}
};
class gpgpu_functional_sim_config {
public:
void reg_options(class OptionParser *opp);
void ptx_set_tex_cache_linesize(unsigned linesize);
unsigned get_forced_max_capability() const {
return m_ptx_force_max_capability;
}
bool convert_to_ptxplus() const { return m_ptx_convert_to_ptxplus; }
bool use_cuobjdump() const { return m_ptx_use_cuobjdump; }
bool experimental_lib_support() const { return m_experimental_lib_support; }
int get_ptx_inst_debug_to_file() const { return g_ptx_inst_debug_to_file; }
const char *get_ptx_inst_debug_file() const { return g_ptx_inst_debug_file; }
int get_ptx_inst_debug_thread_uid() const {
return g_ptx_inst_debug_thread_uid;
}
unsigned get_texcache_linesize() const { return m_texcache_linesize; }
int get_checkpoint_option() const { return checkpoint_option; }
int get_checkpoint_kernel() const { return checkpoint_kernel; }
int get_checkpoint_CTA() const { return checkpoint_CTA; }
int get_resume_option() const { return resume_option; }
int get_resume_kernel() const { return resume_kernel; }
int get_resume_CTA() const { return resume_CTA; }
int get_checkpoint_CTA_t() const { return checkpoint_CTA_t; }
int get_checkpoint_insn_Y() const { return checkpoint_insn_Y; }
private:
// PTX options
int m_ptx_convert_to_ptxplus;
int m_ptx_use_cuobjdump;
int m_experimental_lib_support;
unsigned m_ptx_force_max_capability;
int checkpoint_option;
int checkpoint_kernel;
int checkpoint_CTA;
unsigned resume_option;
unsigned resume_kernel;
unsigned resume_CTA;
unsigned checkpoint_CTA_t;
int checkpoint_insn_Y;
int g_ptx_inst_debug_to_file;
char *g_ptx_inst_debug_file;
int g_ptx_inst_debug_thread_uid;
unsigned m_texcache_linesize;
};
class gpgpu_t {
public:
gpgpu_t(const gpgpu_functional_sim_config &config, gpgpu_context *ctx);
// backward pointer
class gpgpu_context *gpgpu_ctx;
int checkpoint_option;
int checkpoint_kernel;
int checkpoint_CTA;
unsigned resume_option;
unsigned resume_kernel;
unsigned resume_CTA;
unsigned checkpoint_CTA_t;
int checkpoint_insn_Y;
// Move some cycle core stats here instead of being global
unsigned long long gpu_sim_cycle;
unsigned long long gpu_tot_sim_cycle;
void *gpu_malloc(size_t size);
void *gpu_mallocarray(size_t count);
void gpu_memset(size_t dst_start_addr, int c, size_t count);
void memcpy_to_gpu(size_t dst_start_addr, const void *src, size_t count);
void memcpy_from_gpu(void *dst, size_t src_start_addr, size_t count);
void memcpy_gpu_to_gpu(size_t dst, size_t src, size_t count);
class memory_space *get_global_memory() {
return m_global_mem;
}
class memory_space *get_tex_memory() {
return m_tex_mem;
}
class memory_space *get_surf_memory() {
return m_surf_mem;
}
void gpgpu_ptx_sim_bindTextureToArray(const struct textureReference *texref,
const struct cudaArray *array);
void gpgpu_ptx_sim_bindNameToTexture(const char *name,
const struct textureReference *texref,
int dim, int readmode, int ext);
void gpgpu_ptx_sim_unbindTexture(const struct textureReference *texref);
const char *gpgpu_ptx_sim_findNamefromTexture(
const struct textureReference *texref);
const struct textureReference *get_texref(const std::string &texname) const {
std::map<std::string,
std::set<const struct textureReference *> >::const_iterator t =
m_NameToTextureRef.find(texname);
assert(t != m_NameToTextureRef.end());
return *(t->second.begin());
}
const struct cudaArray *get_texarray(const std::string &texname) const {
std::map<std::string, const struct cudaArray *>::const_iterator t =
m_NameToCudaArray.find(texname);
assert(t != m_NameToCudaArray.end());
return t->second;
}
const struct textureInfo *get_texinfo(const std::string &texname) const {
std::map<std::string, const struct textureInfo *>::const_iterator t =
m_NameToTextureInfo.find(texname);
assert(t != m_NameToTextureInfo.end());
return t->second;
}
const struct textureReferenceAttr *get_texattr(
const std::string &texname) const {
std::map<std::string, const struct textureReferenceAttr *>::const_iterator
t = m_NameToAttribute.find(texname);
assert(t != m_NameToAttribute.end());
return t->second;
}
const gpgpu_functional_sim_config &get_config() const {
return m_function_model_config;
}
FILE *get_ptx_inst_debug_file() { return ptx_inst_debug_file; }
// These maps return the current texture mappings for the GPU at any given
// time.
std::map<std::string, const struct cudaArray *> getNameArrayMapping() {
return m_NameToCudaArray;
}
std::map<std::string, const struct textureInfo *> getNameInfoMapping() {
return m_NameToTextureInfo;
}
virtual ~gpgpu_t() {}
protected:
const gpgpu_functional_sim_config &m_function_model_config;
FILE *ptx_inst_debug_file;
class memory_space *m_global_mem;
class memory_space *m_tex_mem;
class memory_space *m_surf_mem;
unsigned long long m_dev_malloc;
// These maps contain the current texture mappings for the GPU at any given
// time.
std::map<std::string, std::set<const struct textureReference *> >
m_NameToTextureRef;
std::map<const struct textureReference *, std::string> m_TextureRefToName;
std::map<std::string, const struct cudaArray *> m_NameToCudaArray;
std::map<std::string, const struct textureInfo *> m_NameToTextureInfo;
std::map<std::string, const struct textureReferenceAttr *> m_NameToAttribute;
};
struct gpgpu_ptx_sim_info {
// Holds properties of the kernel (Kernel's resource use).
// These will be set to zero if a ptxinfo file is not present.
int lmem;
int smem;
int cmem;
int gmem;
int regs;
unsigned maxthreads;
unsigned ptx_version;
unsigned sm_target;
};
struct gpgpu_ptx_sim_arg {
gpgpu_ptx_sim_arg() { m_start = NULL; }
gpgpu_ptx_sim_arg(const void *arg, size_t size, size_t offset) {
m_start = arg;
m_nbytes = size;
m_offset = offset;
}
const void *m_start;
size_t m_nbytes;
size_t m_offset;
};
typedef std::list<gpgpu_ptx_sim_arg> gpgpu_ptx_sim_arg_list_t;
class memory_space_t {
public:
memory_space_t() {
m_type = undefined_space;
m_bank = 0;
}
memory_space_t(const enum _memory_space_t &from) {
m_type = from;
m_bank = 0;
}
bool operator==(const memory_space_t &x) const {
return (m_bank == x.m_bank) && (m_type == x.m_type);
}
bool operator!=(const memory_space_t &x) const { return !(*this == x); }
bool operator<(const memory_space_t &x) const {
if (m_type < x.m_type)
return true;
else if (m_type > x.m_type)
return false;
else if (m_bank < x.m_bank)
return true;
return false;
}
enum _memory_space_t get_type() const { return m_type; }
void set_type(enum _memory_space_t t) { m_type = t; }
unsigned get_bank() const { return m_bank; }
void set_bank(unsigned b) { m_bank = b; }
bool is_const() const {
return (m_type == const_space) || (m_type == param_space_kernel);
}
bool is_local() const {
return (m_type == local_space) || (m_type == param_space_local);
}
bool is_global() const { return (m_type == global_space); }
private:
enum _memory_space_t m_type;
unsigned m_bank; // n in ".const[n]"; note .const == .const[0] (see PTX 2.1
// manual, sec. 5.1.3)
};
const unsigned MAX_MEMORY_ACCESS_SIZE = 128;
typedef std::bitset<MAX_MEMORY_ACCESS_SIZE> mem_access_byte_mask_t;
const unsigned SECTOR_CHUNCK_SIZE = 4; // four sectors
const unsigned SECTOR_SIZE = 32; // sector is 32 bytes width
typedef std::bitset<SECTOR_CHUNCK_SIZE> mem_access_sector_mask_t;
#define NO_PARTIAL_WRITE (mem_access_byte_mask_t())
#define MEM_ACCESS_TYPE_TUP_DEF \
MA_TUP_BEGIN(mem_access_type) \
MA_TUP(GLOBAL_ACC_R), MA_TUP(LOCAL_ACC_R), MA_TUP(CONST_ACC_R), \
MA_TUP(TEXTURE_ACC_R), MA_TUP(GLOBAL_ACC_W), MA_TUP(LOCAL_ACC_W), \
MA_TUP(L1_WRBK_ACC), MA_TUP(L2_WRBK_ACC), MA_TUP(INST_ACC_R), \
MA_TUP(L1_WR_ALLOC_R), MA_TUP(L2_WR_ALLOC_R), \
MA_TUP(NUM_MEM_ACCESS_TYPE) MA_TUP_END(mem_access_type)
#define MA_TUP_BEGIN(X) enum X {
#define MA_TUP(X) X
#define MA_TUP_END(X) \
} \
;
MEM_ACCESS_TYPE_TUP_DEF
#undef MA_TUP_BEGIN
#undef MA_TUP
#undef MA_TUP_END
const char *mem_access_type_str(enum mem_access_type access_type);
enum cache_operator_type {
CACHE_UNDEFINED,
// loads
CACHE_ALL, // .ca
CACHE_LAST_USE, // .lu
CACHE_VOLATILE, // .cv
CACHE_L1, // .nc
// loads and stores
CACHE_STREAMING, // .cs
CACHE_GLOBAL, // .cg
// stores
CACHE_WRITE_BACK, // .wb
CACHE_WRITE_THROUGH // .wt
};
class mem_access_t {
public:
mem_access_t(gpgpu_context *ctx) { init(ctx); }
mem_access_t(mem_access_type type, new_addr_type address, unsigned size,
bool wr, gpgpu_context *ctx) {
init(ctx);
m_type = type;
m_addr = address;
m_req_size = size;
m_write = wr;
}
mem_access_t(mem_access_type type, new_addr_type address, unsigned size,
bool wr, const active_mask_t &active_mask,
const mem_access_byte_mask_t &byte_mask,
const mem_access_sector_mask_t §or_mask, gpgpu_context *ctx)
: m_warp_mask(active_mask),
m_byte_mask(byte_mask),
m_sector_mask(sector_mask) {
init(ctx);
m_type = type;
m_addr = address;
m_req_size = size;
m_write = wr;
}
new_addr_type get_addr() const { return m_addr; }
void set_addr(new_addr_type addr) { m_addr = addr; }
unsigned get_size() const { return m_req_size; }
const active_mask_t &get_warp_mask() const { return m_warp_mask; }
bool is_write() const { return m_write; }
enum mem_access_type get_type() const { return m_type; }
mem_access_byte_mask_t get_byte_mask() const { return m_byte_mask; }
mem_access_sector_mask_t get_sector_mask() const { return m_sector_mask; }
void print(FILE *fp) const {
fprintf(fp, "addr=0x%llx, %s, size=%u, ", m_addr,
m_write ? "store" : "load ", m_req_size);
switch (m_type) {
case GLOBAL_ACC_R:
fprintf(fp, "GLOBAL_R");
break;
case LOCAL_ACC_R:
fprintf(fp, "LOCAL_R ");
break;
case CONST_ACC_R:
fprintf(fp, "CONST ");
break;
case TEXTURE_ACC_R:
fprintf(fp, "TEXTURE ");
break;
case GLOBAL_ACC_W:
fprintf(fp, "GLOBAL_W");
break;
case LOCAL_ACC_W:
fprintf(fp, "LOCAL_W ");
break;
case L2_WRBK_ACC:
fprintf(fp, "L2_WRBK ");
break;
case INST_ACC_R:
fprintf(fp, "INST ");
break;
case L1_WRBK_ACC:
fprintf(fp, "L1_WRBK ");
break;
default:
fprintf(fp, "unknown ");
break;
}
}
gpgpu_context *gpgpu_ctx;
private:
void init(gpgpu_context *ctx);
unsigned m_uid;
new_addr_type m_addr; // request address
bool m_write;
unsigned m_req_size; // bytes
mem_access_type m_type;
active_mask_t m_warp_mask;
mem_access_byte_mask_t m_byte_mask;
mem_access_sector_mask_t m_sector_mask;
};
class mem_fetch;
class mem_fetch_interface {
public:
virtual bool full(unsigned size, bool write) const = 0;
virtual void push(mem_fetch *mf) = 0;
};
class mem_fetch_allocator {
public:
virtual mem_fetch *alloc(new_addr_type addr, mem_access_type type,
unsigned size, bool wr,
unsigned long long cycle) const = 0;
virtual mem_fetch *alloc(const class warp_inst_t &inst,
const mem_access_t &access,
unsigned long long cycle) const = 0;
};
// the maximum number of destination, source, or address uarch operands in a
// instruction
#define MAX_REG_OPERANDS 32
struct dram_callback_t {
dram_callback_t() {
function = NULL;
instruction = NULL;
thread = NULL;
}
void (*function)(const class inst_t *, class ptx_thread_info *);
const class inst_t *instruction;
class ptx_thread_info *thread;
};
class inst_t {
public:
inst_t() {
m_decoded = false;
pc = (address_type)-1;
reconvergence_pc = (address_type)-1;
op = NO_OP;
bar_type = NOT_BAR;
red_type = NOT_RED;
bar_id = (unsigned)-1;
bar_count = (unsigned)-1;
oprnd_type = UN_OP;
sp_op = OTHER_OP;
op_pipe = UNKOWN_OP;
mem_op = NOT_TEX;
num_operands = 0;
num_regs = 0;
memset(out, 0, sizeof(unsigned));
memset(in, 0, sizeof(unsigned));
is_vectorin = 0;
is_vectorout = 0;
space = memory_space_t();
cache_op = CACHE_UNDEFINED;
latency = 1;
initiation_interval = 1;
for (unsigned i = 0; i < MAX_REG_OPERANDS; i++) {
arch_reg.src[i] = -1;
arch_reg.dst[i] = -1;
}
isize = 0;
}
bool valid() const { return m_decoded; }
virtual void print_insn(FILE *fp) const {
fprintf(fp, " [inst @ pc=0x%04x] ", pc);
}
bool is_load() const {
return (op == LOAD_OP || op == TENSOR_CORE_LOAD_OP ||
memory_op == memory_load);
}
bool is_store() const {
return (op == STORE_OP || op == TENSOR_CORE_STORE_OP ||
memory_op == memory_store);
}
unsigned get_num_operands() const { return num_operands; }
unsigned get_num_regs() const { return num_regs; }
void set_num_regs(unsigned num) { num_regs = num; }
void set_num_operands(unsigned num) { num_operands = num; }
void set_bar_id(unsigned id) { bar_id = id; }
void set_bar_count(unsigned count) { bar_count = count; }
address_type pc; // program counter address of instruction
unsigned isize; // size of instruction in bytes
op_type op; // opcode (uarch visible)
barrier_type bar_type;
reduction_type red_type;
unsigned bar_id;
unsigned bar_count;
types_of_operands oprnd_type; // code (uarch visible) identify if the
// operation is an interger or a floating point
special_ops
sp_op; // code (uarch visible) identify if int_alu, fp_alu, int_mul ....
operation_pipeline op_pipe; // code (uarch visible) identify the pipeline of
// the operation (SP, SFU or MEM)
mem_operation mem_op; // code (uarch visible) identify memory type
_memory_op_t memory_op; // memory_op used by ptxplus
unsigned num_operands;
unsigned num_regs; // count vector operand as one register operand
address_type reconvergence_pc; // -1 => not a branch, -2 => use function
// return address
unsigned out[8];
unsigned outcount;
unsigned in[24];
unsigned incount;
unsigned char is_vectorin;
unsigned char is_vectorout;
int pred; // predicate register number
int ar1, ar2;
// register number for bank conflict evaluation
struct {
int dst[MAX_REG_OPERANDS];
int src[MAX_REG_OPERANDS];
} arch_reg;
// int arch_reg[MAX_REG_OPERANDS]; // register number for bank conflict
// evaluation
unsigned latency; // operation latency
unsigned initiation_interval;
unsigned data_size; // what is the size of the word being operated on?
memory_space_t space;
cache_operator_type cache_op;
protected:
bool m_decoded;
virtual void pre_decode() {}
};
enum divergence_support_t { POST_DOMINATOR = 1, NUM_SIMD_MODEL };
const unsigned MAX_ACCESSES_PER_INSN_PER_THREAD = 8;
class warp_inst_t : public inst_t {
public:
// constructors
warp_inst_t() {