-
Notifications
You must be signed in to change notification settings - Fork 545
/
Copy pathptx_sim.cc
584 lines (529 loc) · 18.5 KB
/
ptx_sim.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
// Copyright (c) 2009-2011, Tor M. Aamodt, Ali Bakhoda
// The University of British Columbia
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// Redistributions in binary form must reproduce the above copyright notice, this
// list of conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution.
// Neither the name of The University of British Columbia nor the names of its
// contributors may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "ptx_sim.h"
#include <string>
#include "ptx_ir.h"
#include "ptx.tab.hpp"
#include "../gpgpu-sim/gpu-sim.h"
#include "../gpgpu-sim/shader.h"
void feature_not_implemented( const char *f );
std::set<unsigned long long> g_ptx_cta_info_sm_idx_used;
unsigned long long g_ptx_cta_info_uid = 1;
ptx_cta_info::ptx_cta_info( unsigned sm_idx )
{
assert( g_ptx_cta_info_sm_idx_used.find(sm_idx) == g_ptx_cta_info_sm_idx_used.end() );
g_ptx_cta_info_sm_idx_used.insert(sm_idx);
m_sm_idx = sm_idx;
m_uid = g_ptx_cta_info_uid++;
}
void ptx_cta_info::add_thread( ptx_thread_info *thd )
{
m_threads_in_cta.insert(thd);
}
unsigned ptx_cta_info::num_threads() const
{
return m_threads_in_cta.size();
}
void ptx_cta_info::check_cta_thread_status_and_reset()
{
bool fail = false;
if ( m_threads_that_have_exited.size() != m_threads_in_cta.size() ) {
printf("\n\n");
printf("Execution error: Some threads still running in CTA during CTA reallocation! (1)\n");
printf(" CTA uid = %Lu (sm_idx = %u) : %lu running out of %zu total\n",
m_uid,
m_sm_idx,
(m_threads_in_cta.size() - m_threads_that_have_exited.size()), m_threads_in_cta.size() );
printf(" These are the threads that are still running:\n");
std::set<ptx_thread_info*>::iterator t_iter;
for ( t_iter=m_threads_in_cta.begin(); t_iter != m_threads_in_cta.end(); ++t_iter ) {
ptx_thread_info *t = *t_iter;
if ( m_threads_that_have_exited.find(t) == m_threads_that_have_exited.end() ) {
if ( m_dangling_pointers.find(t) != m_dangling_pointers.end() ) {
printf(" <thread deleted>\n");
} else {
printf(" [done=%c] : ", (t->is_done()?'Y':'N') );
t->print_insn( t->get_pc(), stdout );
printf("\n");
}
}
}
printf("\n\n");
fail = true;
}
if ( fail ) {
abort();
}
bool fail2 = false;
std::set<ptx_thread_info*>::iterator t_iter;
for ( t_iter=m_threads_in_cta.begin(); t_iter != m_threads_in_cta.end(); ++t_iter ) {
ptx_thread_info *t = *t_iter;
if ( m_dangling_pointers.find(t) == m_dangling_pointers.end() ) {
if ( !t->is_done() ) {
if ( !fail2 ) {
printf("Execution error: Some threads still running in CTA during CTA reallocation! (2)\n");
printf(" CTA uid = %Lu (sm_idx = %u) :\n", m_uid, m_sm_idx );
fail2 = true;
}
printf(" ");
t->print_insn( t->get_pc(), stdout );
printf("\n");
}
}
}
if ( fail2 ) {
abort();
}
m_threads_in_cta.clear();
m_threads_that_have_exited.clear();
m_dangling_pointers.clear();
}
void ptx_cta_info::register_thread_exit( ptx_thread_info *thd )
{
assert( m_threads_that_have_exited.find(thd) == m_threads_that_have_exited.end() );
m_threads_that_have_exited.insert(thd);
}
void ptx_cta_info::register_deleted_thread( ptx_thread_info *thd )
{
m_dangling_pointers.insert(thd);
}
unsigned ptx_cta_info::get_sm_idx() const
{
return m_sm_idx;
}
ptx_warp_info::ptx_warp_info()
{
reset_done_threads();
}
unsigned ptx_warp_info::get_done_threads() const
{
return m_done_threads;
}
void ptx_warp_info::inc_done_threads()
{
m_done_threads++;
}
void ptx_warp_info::reset_done_threads()
{
m_done_threads = 0;
}
unsigned g_ptx_thread_info_uid_next=1;
unsigned g_ptx_thread_info_delete_count=0;
ptx_thread_info::~ptx_thread_info()
{
g_ptx_thread_info_delete_count++;
}
ptx_thread_info::ptx_thread_info( kernel_info_t &kernel )
: m_kernel(kernel)
{
m_uid = g_ptx_thread_info_uid_next++;
m_core = NULL;
m_barrier_num = -1;
m_at_barrier = false;
m_valid = false;
m_gridid = 0;
m_thread_done = false;
m_cycle_done = 0;
m_PC=0;
m_icount = 0;
m_last_effective_address = 0;
m_last_memory_space = undefined_space;
m_branch_taken = 0;
m_shared_mem = NULL;
m_warp_info = NULL;
m_cta_info = NULL;
m_local_mem = NULL;
m_symbol_table = NULL;
m_func_info = NULL;
m_hw_tid = -1;
m_hw_wid = -1;
m_hw_sid = -1;
m_last_dram_callback.function = NULL;
m_last_dram_callback.instruction = NULL;
m_regs.push_back( reg_map_t() );
m_debug_trace_regs_modified.push_back( reg_map_t() );
m_debug_trace_regs_read.push_back( reg_map_t() );
m_callstack.push_back( stack_entry() );
m_RPC = -1;
m_RPC_updated = false;
m_last_was_call = false;
m_enable_debug_trace = false;
m_local_mem_stack_pointer = 0;
m_gpu = NULL;
m_last_set_operand_value=ptx_reg_t();
}
const ptx_version &ptx_thread_info::get_ptx_version() const
{
return m_func_info->get_ptx_version();
}
void ptx_thread_info::set_done()
{
assert( !m_at_barrier );
m_thread_done = true;
m_cycle_done = gpu_sim_cycle;
}
unsigned ptx_thread_info::get_builtin( int builtin_id, unsigned dim_mod )
{
assert( m_valid );
switch ((builtin_id&0xFFFF)) {
case CLOCK_REG:
return (unsigned)(gpu_sim_cycle + gpu_tot_sim_cycle);
case CLOCK64_REG:
abort(); // change return value to unsigned long long?
// GPGPUSim clock is 4 times slower - multiply by 4
return (gpu_sim_cycle + gpu_tot_sim_cycle)*4;
case HALFCLOCK_ID:
// GPGPUSim clock is 4 times slower - multiply by 4
// Hardware clock counter is incremented at half the shader clock frequency - divide by 2 (Henry '10)
return (gpu_sim_cycle + gpu_tot_sim_cycle)*2;
case CTAID_REG:
assert( dim_mod < 3 );
if( dim_mod == 0 ) return m_ctaid.x;
if( dim_mod == 1 ) return m_ctaid.y;
if( dim_mod == 2 ) return m_ctaid.z;
abort();
break;
case ENVREG_REG:{
int index = builtin_id >> 16;
dim3 gdim = this->get_core()->get_kernel_info()->get_grid_dim();
switch(index){
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
return 0;
break;
case 6:
return gdim.x;
case 7:
return gdim.y;
case 8:
return gdim.z;
case 9:
if(gdim.z == 1 && gdim.y == 1)
return 1;
else if(gdim.z == 1)
return 2;
else
return 3;
break;
default:
break;
}
}
case GRIDID_REG:
return m_gridid;
case LANEID_REG: return get_hw_tid() % m_core->get_warp_size();
case LANEMASK_EQ_REG: feature_not_implemented( "%lanemask_eq" ); return 0;
case LANEMASK_LE_REG: feature_not_implemented( "%lanemask_le" ); return 0;
case LANEMASK_LT_REG: feature_not_implemented( "%lanemask_lt" ); return 0;
case LANEMASK_GE_REG: feature_not_implemented( "%lanemask_ge" ); return 0;
case LANEMASK_GT_REG: feature_not_implemented( "%lanemask_gt" ); return 0;
case NCTAID_REG:
assert( dim_mod < 3 );
if( dim_mod == 0 ) return m_nctaid.x;
if( dim_mod == 1 ) return m_nctaid.y;
if( dim_mod == 2 ) return m_nctaid.z;
abort();
break;
case NTID_REG:
assert( dim_mod < 3 );
if( dim_mod == 0 ) return m_ntid.x;
if( dim_mod == 1 ) return m_ntid.y;
if( dim_mod == 2 ) return m_ntid.z;
abort();
break;
case NWARPID_REG: feature_not_implemented( "%nwarpid" ); return 0;
case PM_REG: feature_not_implemented( "%pm" ); return 0;
case SMID_REG: feature_not_implemented( "%smid" ); return 0;
case TID_REG:
assert( dim_mod < 3 );
if( dim_mod == 0 ) return m_tid.x;
if( dim_mod == 1 ) return m_tid.y;
if( dim_mod == 2 ) return m_tid.z;
abort();
break;
case WARPSZ_REG: return m_core->get_warp_size() ;
default:
assert(0);
}
return 0;
}
void ptx_thread_info::set_info( function_info *func )
{
m_symbol_table = func->get_symtab();
m_func_info = func;
m_PC = func->get_start_PC();
}
void ptx_thread_info::cpy_tid_to_reg( dim3 tid )
{
//copies %tid.x, %tid.y and %tid.z into $r0
ptx_reg_t data;
data.s64=0;
data.u32=(tid.x + (tid.y<<16) + (tid.z<<26));
const symbol *r0 = m_symbol_table->lookup("$r0");
if (r0){
//No need to set pid if kernel doesn't use it
set_reg(r0,data);
}
}
void ptx_thread_info::print_insn( unsigned pc, FILE * fp ) const
{
m_func_info->print_insn(pc,fp);
}
static void print_reg( FILE *fp, std::string name, ptx_reg_t value, symbol_table *symtab )
{
const symbol *sym = symtab->lookup(name.c_str());
fprintf(fp," %8s ", name.c_str() );
if( sym == NULL ) {
fprintf(fp,"<unknown type> 0x%llx\n", (unsigned long long ) value.u64 );
return;
}
const type_info *t = sym->type();
if( t == NULL ) {
fprintf(fp,"<unknown type> 0x%llx\n", (unsigned long long ) value.u64 );
return;
}
type_info_key ti = t->get_key();
switch ( ti.scalar_type() ) {
case S8_TYPE: fprintf(fp,".s8 %d\n", value.s8 ); break;
case S16_TYPE: fprintf(fp,".s16 %d\n", value.s16 ); break;
case S32_TYPE: fprintf(fp,".s32 %d\n", value.s32 ); break;
case S64_TYPE: fprintf(fp,".s64 %Ld\n", value.s64 ); break;
case U8_TYPE: fprintf(fp,".u8 %u [0x%02x]\n", value.u8, (unsigned) value.u8 ); break;
case U16_TYPE: fprintf(fp,".u16 %u [0x%04x]\n", value.u16, (unsigned) value.u16 ); break;
case U32_TYPE: fprintf(fp,".u32 %u [0x%08x]\n", value.u32, (unsigned) value.u32 ); break;
case U64_TYPE: fprintf(fp,".u64 %llu [0x%llx]\n", value.u64, value.u64 ); break;
case F16_TYPE: fprintf(fp,".f16 %f [0x%04x]\n", value.f16, (unsigned) value.u16 ); break;
case F32_TYPE: fprintf(fp,".f32 %.15lf [0x%08x]\n", value.f32, value.u32 ); break;
case F64_TYPE: fprintf(fp,".f64 %.15le [0x%016llx]\n", value.f64, value.u64 ); break;
case B8_TYPE: fprintf(fp,".b8 0x%02x\n", (unsigned) value.u8 ); break;
case B16_TYPE: fprintf(fp,".b16 0x%04x\n", (unsigned) value.u16 ); break;
case B32_TYPE: fprintf(fp,".b32 0x%08x\n", (unsigned) value.u32 ); break;
case B64_TYPE: fprintf(fp,".b64 0x%llx\n", (unsigned long long ) value.u64 ); break;
case PRED_TYPE: fprintf(fp,".pred %u\n", (unsigned) value.pred ); break;
default:
fprintf( fp, "non-scalar type\n" );
break;
}
fflush(fp);
}
static void print_reg( std::string name, ptx_reg_t value, symbol_table *symtab )
{
print_reg(stdout,name,value,symtab);
}
void ptx_thread_info::callstack_push( unsigned pc, unsigned rpc, const symbol *return_var_src, const symbol *return_var_dst, unsigned call_uid )
{
m_RPC = -1;
m_RPC_updated = true;
m_last_was_call = true;
assert( m_func_info != NULL );
m_callstack.push_back( stack_entry(m_symbol_table,m_func_info,pc,rpc,return_var_src,return_var_dst,call_uid) );
m_regs.push_back( reg_map_t() );
m_debug_trace_regs_modified.push_back( reg_map_t() );
m_debug_trace_regs_read.push_back( reg_map_t() );
m_local_mem_stack_pointer += m_func_info->local_mem_framesize();
}
//ptxplus version of callstack_push.
void ptx_thread_info::callstack_push_plus( unsigned pc, unsigned rpc, const symbol *return_var_src, const symbol *return_var_dst, unsigned call_uid )
{
m_RPC = -1;
m_RPC_updated = true;
m_last_was_call = true;
assert( m_func_info != NULL );
m_callstack.push_back( stack_entry(m_symbol_table,m_func_info,pc,rpc,return_var_src,return_var_dst,call_uid) );
//m_regs.push_back( reg_map_t() );
//m_debug_trace_regs_modified.push_back( reg_map_t() );
//m_debug_trace_regs_read.push_back( reg_map_t() );
m_local_mem_stack_pointer += m_func_info->local_mem_framesize();
}
bool ptx_thread_info::callstack_pop()
{
const symbol *rv_src = m_callstack.back().m_return_var_src;
const symbol *rv_dst = m_callstack.back().m_return_var_dst;
assert( !((rv_src != NULL) ^ (rv_dst != NULL)) ); // ensure caller and callee agree on whether there is a return value
// read return value from callee frame
arg_buffer_t buffer;
if( rv_src != NULL )
buffer = copy_arg_to_buffer(this, operand_info(rv_src), rv_dst );
m_symbol_table = m_callstack.back().m_symbol_table;
m_NPC = m_callstack.back().m_PC;
m_RPC_updated = true;
m_last_was_call = false;
m_RPC = m_callstack.back().m_RPC;
m_func_info = m_callstack.back().m_func_info;
if( m_func_info ) {
assert( m_local_mem_stack_pointer >= m_func_info->local_mem_framesize() );
m_local_mem_stack_pointer -= m_func_info->local_mem_framesize();
}
m_callstack.pop_back();
m_regs.pop_back();
m_debug_trace_regs_modified.pop_back();
m_debug_trace_regs_read.pop_back();
// write return value into caller frame
if( rv_dst != NULL )
copy_buffer_to_frame(this, buffer);
return m_callstack.empty();
}
//ptxplus version of callstack_pop
bool ptx_thread_info::callstack_pop_plus()
{
const symbol *rv_src = m_callstack.back().m_return_var_src;
const symbol *rv_dst = m_callstack.back().m_return_var_dst;
assert( !((rv_src != NULL) ^ (rv_dst != NULL)) ); // ensure caller and callee agree on whether there is a return value
// read return value from callee frame
arg_buffer_t buffer;
if( rv_src != NULL )
buffer = copy_arg_to_buffer(this, operand_info(rv_src), rv_dst );
m_symbol_table = m_callstack.back().m_symbol_table;
m_NPC = m_callstack.back().m_PC;
m_RPC_updated = true;
m_last_was_call = false;
m_RPC = m_callstack.back().m_RPC;
m_func_info = m_callstack.back().m_func_info;
if( m_func_info ) {
assert( m_local_mem_stack_pointer >= m_func_info->local_mem_framesize() );
m_local_mem_stack_pointer -= m_func_info->local_mem_framesize();
}
m_callstack.pop_back();
//m_regs.pop_back();
//m_debug_trace_regs_modified.pop_back();
//m_debug_trace_regs_read.pop_back();
// write return value into caller frame
if( rv_dst != NULL )
copy_buffer_to_frame(this, buffer);
return m_callstack.empty();
}
void ptx_thread_info::dump_callstack() const
{
std::list<stack_entry>::const_iterator c=m_callstack.begin();
std::list<reg_map_t>::const_iterator r=m_regs.begin();
printf("\n\n");
printf("Call stack for thread uid = %u (sc=%u, hwtid=%u)\n", m_uid, m_hw_sid, m_hw_tid );
while( c != m_callstack.end() && r != m_regs.end() ) {
const stack_entry &c_e = *c;
const reg_map_t ®s = *r;
if( !c_e.m_valid ) {
printf(" <entry> #regs = %zu\n", regs.size() );
} else {
printf(" %20s PC=%3u RV= (callee=\'%s\',caller=\'%s\') #regs = %zu\n",
c_e.m_func_info->get_name().c_str(), c_e.m_PC,
c_e.m_return_var_src->name().c_str(),
c_e.m_return_var_dst->name().c_str(),
regs.size() );
}
c++;
r++;
}
if( c != m_callstack.end() || r != m_regs.end() ) {
printf(" *** mismatch in m_regs and m_callstack sizes ***\n" );
}
printf("\n\n");
}
std::string ptx_thread_info::get_location() const
{
const ptx_instruction *pI = m_func_info->get_instruction(m_PC);
char buf[1024];
snprintf(buf,1024,"%s:%u", pI->source_file(), pI->source_line() );
return std::string(buf);
}
const ptx_instruction *ptx_thread_info::get_inst() const
{
return m_func_info->get_instruction(m_PC);
}
const ptx_instruction *ptx_thread_info::get_inst( addr_t pc ) const
{
return m_func_info->get_instruction(pc);
}
void ptx_thread_info::dump_regs( FILE *fp )
{
if(m_regs.empty()) return;
if(m_regs.back().empty()) return;
fprintf(fp,"Register File Contents:\n");
fflush(fp);
reg_map_t::const_iterator r;
for ( r=m_regs.back().begin(); r != m_regs.back().end(); ++r ) {
const symbol *sym = r->first;
ptx_reg_t value = r->second;
std::string name = sym->name();
print_reg(fp,name,value,m_symbol_table);
}
}
void ptx_thread_info::dump_modifiedregs(FILE *fp)
{
if( !(m_debug_trace_regs_modified.empty() ||
m_debug_trace_regs_modified.back().empty()) ) {
fprintf(fp,"Output Registers:\n");
fflush(fp);
reg_map_t::iterator r;
for ( r=m_debug_trace_regs_modified.back().begin(); r != m_debug_trace_regs_modified.back().end(); ++r ) {
const symbol *sym = r->first;
std::string name = sym->name();
ptx_reg_t value = r->second;
print_reg(fp,name,value,m_symbol_table);
}
}
if( !(m_debug_trace_regs_read.empty() ||
m_debug_trace_regs_read.back().empty()) ) {
fprintf(fp,"Input Registers:\n");
fflush(fp);
reg_map_t::iterator r;
for ( r=m_debug_trace_regs_read.back().begin(); r != m_debug_trace_regs_read.back().end(); ++r ) {
const symbol *sym = r->first;
std::string name = sym->name();
ptx_reg_t value = r->second;
print_reg(fp,name,value,m_symbol_table);
}
}
}
void ptx_thread_info::push_breakaddr(const operand_info &breakaddr)
{
m_breakaddrs.push(breakaddr);
}
const operand_info& ptx_thread_info::pop_breakaddr()
{
if(m_breakaddrs.empty()) {
printf("empty breakaddrs stack");
assert(0);
}
operand_info& breakaddr = m_breakaddrs.top();
m_breakaddrs.pop();
return breakaddr;
}
void ptx_thread_info::set_npc( const function_info *f )
{
m_NPC = f->get_start_PC();
m_func_info = const_cast<function_info*>( f );
m_symbol_table = m_func_info->get_symtab();
}
void feature_not_implemented( const char *f )
{
printf("GPGPU-Sim: feature '%s' not supported\n", f );
abort();
}