-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputeFeatures.c
202 lines (188 loc) · 4.89 KB
/
computeFeatures.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
* computeFeatures.c
* FeatureViewer
*
* Created by Roger Herikstad on 4/29/11.
* Copyright 2011 NUS. All rights reserved.
*
*/
#include "computeFeatures.h"
void computeSpikeArea(float *input, unsigned int stride_in, unsigned int N, unsigned int stride_out, float *output)
{
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_apply(N, queue, ^(size_t wf){
int i = 0;
double d;
double f = 0;
for(i=0;i<stride_in;i++)
{
d = input[wf*stride_in+i];
f+=d*d;
}
output[wf*stride_out] = (float)sqrt(f);
});
}
void computeSpikeWidth(float *input, unsigned int stride_in, unsigned int N, unsigned int stride_out,float *output)
{
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, NULL);
//create the interpolate vector B
int NN = stride_in;///3;
int M = 4*NN;
float *B = malloc(M*sizeof(float));
int l=0;
for(l=0;l<M;l++)
{
B[l] = l*0.25;
}
dispatch_apply(N, queue, ^(size_t wf){
int i = 0;
int s,e;
float m =0.0;
float d;
//find the minimum
//should use interpolation here
float *C = malloc(M*sizeof(float));
float *A = malloc(NN*sizeof(float));
for(i=0;i<NN;i++)
{
A[i] = input[wf*stride_in+i];
}
vDSP_vlint(A,B,1,C,1,M,NN);
free(A);
for(i=7*4;i<14*4;i++)
{
//d = input[wf*stride+3*i+1];
d = C[i];
if( d< m )
{
m = d;
e = i;
}
}
//determine the width of the peak
s = 0;
//while( (s < stride ) && (input[wf*stride+3*s+1] > 0.5*m ) )
while( (s < M-1 ) && (C[s] > 0.5*m ) )
{
s++;
}
//while( (s < stride) && (input[wf*stride+3*e+1] < 0.5*m) )
while( (e < M-1) && (C[e] < 0.5*m) )
{
e++;
}
//assume for now 30kHz sample rate
//TODO: make this general
m = (B[e]-B[s])/30.0;
output[wf*stride_out] = m;
free(C);
});
free(B);
//scale
}
void computeSpikeFFT(float *input, unsigned int stride_in, unsigned int N, unsigned int stride_out, float* output)
{
//create an FFT setup
int exponent = (int)ceil(log2((double)stride_in));
int maxlen = (1<<exponent);
//padded vector
float *rvector = calloc(maxlen,sizeof(float));
float *ivector = calloc(maxlen,sizeof(float));
float *zero = calloc(maxlen,sizeof(float));
FFTSetup _fftsetup = vDSP_create_fftsetup(exponent, kFFTRadix2 );
int i,j;
for(i=0;i<N;i++)
{
memcpy(rvector,input+i*stride_in,stride_in*sizeof(float));
memcpy(ivector,zero,maxlen*sizeof(float));
DSPSplitComplex v;
v.imagp = ivector;
v.realp = rvector;
vDSP_fft_zrip(_fftsetup,&v,1,exponent,kFFTDirection_Forward);
vDSP_zvabs(&v,1,output + i*stride_out, 1,stride_in);
}
free(rvector);
free(ivector);
vDSP_destroy_fftsetup(_fftsetup);
}
void computeSpikePCA(float *input,unsigned int stride_in, unsigned int N1, unsigned int N2, unsigned int stride_out, float* output)
{
int M = N2;
unsigned int i,j,k;
double *indata = malloc(N1*N2*sizeof(double));
for(i=0;i<N1;i++)
{
for(j=0;j<N2;j++)
{
indata[i*N2+j] = (double)input[i*N2*stride_in +j*stride_in];
}
}
//first compute the covariance matrix
double *mean = malloc(M*sizeof(double));
double *cov = calloc(M*M,sizeof(double));
//first compute mean
for(i=0;i<M;i++)
{
vDSP_meanvD(indata+i, M, mean+i, N1);
}
for(i=0;i<N1;i++)
{
for(j=0;j<M;j++)
{
for(k=j;k<M;k++)
{
cov[j*M+k] += indata[i*M+j]*indata[i*M+k];
//symmetric
cov[k*M+j] = cov[j*M+k];
}
}
}
//divide each element by M
for(j=0;j<M;j++)
{
for(k=j;k<M;k++)
{
cov[j*M+k] /=M;
cov[j*M+k]-=mean[j]*mean[j];
cov[k*M+j] = cov[j*M+k];
}
}
double *s = malloc(M*sizeof(double));
double *u = malloc(M*M*sizeof(double));
double *v = malloc(M*M*sizeof(double));
int lwork = 5*M;
int info = 0;
double *work = malloc(lwork*sizeof(double));
dgesvd_("A", "A", &M, &M, cov, &M, s, u, &M, v, &M, work, &lwork, &info);
//compute the projections of each waveforms onto the eigenvectors
//define a structure to hold the output
double *outdata = malloc(N1*N2*sizeof(double));
for(i=0;i<N1;i++)
{
//cblas_dgemv(CblasRowMajor,CblasNoTrans,M,M,1.0,u,M,indata+i*M,1 ,1.0,outdata+i*N2,1);
for(j=0;j<N2;j++)
{
outdata[i*N2+j] = 0;
for(k=0;k<N2;k++)
{
outdata[i*N2+j]+=u[j*N2+k]*indata[i*N2+k];
}
}
}
//now copy to the output structure
for(i=0;i<N1;i++)
{
for(j=0;j<N2;j++)
{
output[i*N2*stride_in + j*stride_in] = (float)outdata[i*N2+j];
}
}
free(outdata);
free(s);
free(u);
free(v);
free(work);
free(mean);
free(cov);
free(indata);
}