-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslic_mask.py
254 lines (214 loc) · 7.61 KB
/
slic_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from skimage.segmentation import slic
from skimage.segmentation import mark_boundaries
from skimage.util import img_as_float
from skimage import io
from skimage.draw import circle, line_aa, polygon
#from raw_read import get_mask
import cv2
import numpy as np
import generate_mask as gm
import os
import argparse
img_src = 'Lifting/images'
csv_src = 'Lifting/csv'
dst = 'grab_cut/Lifting2'
# construct the argument parser and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--image", required = True, help = "Path to the image")
# args = vars(ap.parse_args())
file_list = os.listdir(img_src)
file_list.sort()
def read_csv(filename):
f=filename.split('.')
with open(csv_src + '/' + f[0]+'.csv', 'rb') as csvfile:
pt=[]
for line in csvfile.readlines():
array = line.split(',')
for k in range(len(array)):
if k%3==0:
x=int(round(float(array[k])*w))
y=int(round(float(array[k+1])*h))
pt.append([x,y,1])
return pt
def create_rect(pt,h,w):
rect=[]
sort_x= sorted(pt,key= lambda x:x[0])
sort_y= sorted(pt,key= lambda y:y[1])
for item in sort_x:
if item[0]!=0 and item[1]!=0:
rect.append(item[0]-int(0.1*w))
break
for item in sort_y:
if item[0]!=0 and item[1]!=0:
rect.append(item[1]-int(0.1*h))
break
#print rect
rect.append(sort_x[-1][0] +int(0.1*w))
rect.append(sort_y[-1][1] +int(0.1*h))
if rect[0]<0:
rect[0]=0
if rect[1]<0:
rect[1]=0
if rect[2]>w:
rect[2]=w
if rect[3]>h:
rect[3]=h
return rect
def add_limb(kp1,kp2,mask,point_radius=7):
MISSING_VALUE =0
from_missing = kp1[0] == MISSING_VALUE or kp1[1] == MISSING_VALUE
to_missing = kp2[0] == MISSING_VALUE or kp2[1] == MISSING_VALUE
#from_missing = kp1[2] == MISSING_VALUE
#to_missing = kp2[2] == MISSING_VALUE
if from_missing or to_missing:
return mask
img_size = (h,w)
kp1 = np.asarray(kp1[0:2])
kp2 = np.asarray(kp2[0:2])
norm_vec = kp1 - kp2
norm_vec = np.array([-norm_vec[1],norm_vec[0]])
norm_vec = point_radius * norm_vec / np.linalg.norm(norm_vec)
vetexes = np.array([
kp1 + norm_vec,
kp1 - norm_vec,
kp2 - norm_vec,
kp2 + norm_vec
])
#pdb.set_trace()
yy, xx = polygon(vetexes[:, 1], vetexes[:, 0], shape=img_size)
mask[yy, xx] = 255
yy, xx = circle(kp1[1], kp1[0], radius=point_radius, shape=img_size)
mask[yy, xx] = 255
yy, xx = circle(kp2[1], kp2[0], radius=point_radius, shape=img_size)
mask[yy, xx] = 255
return mask
def ret_mid_pt(kp):
# rsh = np.asarray(kp[2])
# lsh = np.asarray(kp[5])
# lhip = np.asarray(kp[11])
# rhip= np.asarray(kp[8])
# pt = [rsh[0:2],lsh[0:2],lhip[0:2],rhip[0:2]]
bck = np.asarray([0,0])
i=0
for p in kp:
if p[0]!=0 and p[1]!=0:
bck = bck+np.asarray(p[0:2])
i=i+1
bck = bck/i
#kp.append(list(bck.astype(np.uint8)))
return list(bck.astype(np.uint8))
# def read_raw(filename,r,c):
# fd = open(os.path.join(mask_src,filename.split('.')[0] + '.raw' ), 'rb')
# f = np.fromfile(fd, dtype=np.uint8,count=r*c)
# im = f.reshape((r,c)) #notice row, column format
# fd.close()
# return im
g=gm.GenerateMask()
for filename in file_list:
# load the image and convert it to a floating point data type
image = img_as_float(io.imread(os.path.join(img_src,filename)))
img = cv2.imread(os.path.join(img_src,filename))
#image = cv2.resize(image,None,fx=2.5,fy=2.5,interpolation=cv2.INTER_CUBIC)
#image = cv2.resize(image,None,fx=2.5,fy=2.5,interpolation=cv2.INTER_CUBIC)
#img = cv2.resize(img,None,fx=2.5,fy=2.5,interpolation=cv2.INTER_CUBIC).astype(np.uint8)
temp = image.copy().astype('uint8')
h,w,d=image.shape
kp=read_csv(filename)
bg,sure_fg = g.mask_generate(kp,h,w)
mid_hip = ret_mid_pt([kp[8],kp[11]])
sure_fg = add_limb(kp[1],mid_hip,sure_fg)
# sure_fg2 = add_limb(kp[1],kp[11],sure_fg)
# sure_fg2 = add_limb(kp[1],kp[8],sure_fg2)
sure_fg = add_limb(kp[5],kp[8],sure_fg)
sure_fg = add_limb(kp[2],kp[11],sure_fg)
# sure_fg2 = add_limb(kp[2],kp[8],sure_fg2)
# sure_fg2 = add_limb(kp[5],kp[11],sure_fg2)
fg_orig = sure_fg.copy()
#fg_orig2 = sure_fg2.copy()
sure_fg2 = sure_fg.copy()
cv2.imshow('s',sure_fg2)
# loop over the number of segments
numSegments = [100, 200, 300]
segments = slic(image, n_segments = numSegments[1], sigma = 5)
#print segments
fg_mask= segments.copy()
#cv2.imshow('ss',fg_mask)
fg=[]
for (i, segVal) in enumerate(np.unique(segments)):
mask = np.zeros(image.shape[:2], dtype = "uint8")
mask[segments == segVal] = 255
_, contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
seg_area = cv2.contourArea(contours[0])
mask2 = cv2.bitwise_and(sure_fg,mask)
_, contours, _ = cv2.findContours(mask2, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
if len(contours)>0:
inter_area= cv2.contourArea(contours[0])
if inter_area>seg_area*0.4:
sure_fg2[mask==255] =255
#cv2.imshow('ssds',mask)
# _, contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# #print contours
# #m =cv2.drawContours(temp,contours[0],-1,255,2,8)
# # cv2.imshow('m',m)
# # cv2.waitKey(0)
# #pts = np.where((segments==segVal))
# for k in kp:
# pt = (k[0],k[1])
# if cv2.pointPolygonTest(contours[0], pt, False)>=0:
# #print 'in'
# fg.append(segVal)
# fg_mask = np.where(fg_mask[:,:]==segVal,300,fg_mask[:,:])
# fg_mask = np.where(fg_mask[:,:]==300,255,0)
# mask2 = cv2.bitwise_or(sure_fg.astype('uint8'),fg_mask.astype('uint8'))
# mask2 = np.where(mask2[:,:]==255,1,0)
kernel =cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
sure_fg2 = cv2.morphologyEx(sure_fg2,cv2.MORPH_CLOSE,kernel,iterations=2)
mask2 = np.where(sure_fg2[:,:]==255,1,0).astype('uint8')
img2 = image*mask2[:,:,np.newaxis]
##########################################################################
init_mask = np.zeros(image.shape[:2], dtype = "uint8")
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
rect=create_rect(kp,h,w)
tp_c=(rect[0],rect[1])
bt_c=(rect[2],rect[3])
init_mask, bgdModel, fgdModel = cv2.grabCut(img,init_mask,tuple(rect),bgdModel,fgdModel,3,cv2.GC_INIT_WITH_RECT)
sure_bg = np.where((init_mask==2)|(init_mask==0),0,1).astype('uint8')
init_mask = np.where((init_mask==1)|(init_mask==3),0,init_mask).astype('uint8')
init_mask[mask2==1]=3
init_mask[mask2==0]=2
init_mask[sure_bg==0]=0
init_mask[bg==0]=0
init_mask[fg_orig==255]=1
mask, bgdModel, fgdModel = cv2.grabCut(img,init_mask,None,bgdModel,fgdModel,3,cv2.GC_INIT_WITH_MASK)
mask = np.where((mask==2)|(mask==0),0,mask).astype('uint8')
mask = np.where((mask==3)|(mask==1),3,mask).astype('uint8')
#mask[sure_fg==1]=3
mask[fg_orig==255]=1
mask, bgdModel, fgdModel = cv2.grabCut(img,mask,None,bgdModel,fgdModel,3,cv2.GC_INIT_WITH_MASK)
mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
# mm = cv2.bitwise_and(mask,mask2)
#mask= cv2.bitwise_or(mask,mask2)
img1 = img*mask[:,:,np.newaxis]
re=cv2.resize(img1,(64,128),interpolation = cv2.INTER_AREA)
mask = np.where((mask==1),255,0).astype('uint8')
# mm = get_mask(filename)
# bgdModel = np.zeros((1,65),np.float64)
# fgdModel = np.zeros((1,65),np.float64)
# init_mask= np.zeros((h,w),dtype='uint8')
# mm_img = image*mm[:,:,np.newaxis]
# mm[fg_mask==1]=1
# mask, bgdModel, fgdModel = cv2.grabCut(mm_img.astype('uint8'),mm,None,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_MASK)
# mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
# img3 = image*mask[:,:,np.newaxis]
# show the output of SLIC
#fig = plt.figure("Superpixels -- %d segments" % (numSegments))
#ax = fig.add_subplot(1, 1, 1)
#cv2.imshow('re',mark_boundaries(image, segments))
cv2.imshow('mask',img1)
cv2.imwrite(os.path.join(dst,filename),mask)
cv2.imshow('mask222',sure_fg)
#plt.axis("off")
cv2.waitKey(1)
# show the plots
#plt.show()