-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslic_seg.py
44 lines (37 loc) · 1.4 KB
/
slic_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from skimage.segmentation import slic
from skimage.segmentation import mark_boundaries
from skimage.util import img_as_float
from skimage import io
import cv2
import os
import argparse
folder = 'test'
# construct the argument parser and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--image", required = True, help = "Path to the image")
# args = vars(ap.parse_args())
file_list = os.listdir(folder)
for filename in file_list:
# load the image and convert it to a floating point data type
image = img_as_float(io.imread(os.path.join(folder,filename)))
# loop over the number of segments
numSegments = [100, 200, 300]
# apply SLIC and extract (approximately) the supplied number
# of segments
segments = slic(image, n_segments = numSegments[1], sigma = 5)
for (i, segVal) in enumerate(np.unique(segments)):
mask = np.zeros(image.shape[:2], dtype = "uint8")
mask[segments == segVal] = 255
_, contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
#pts = np.where((segments==segVal))
for pt in kp:
if cv2.pointPolygonTest(contours[0], pt, False):
fg.append(segVal)
# show the output of SLIC
#fig = plt.figure("Superpixels -- %d segments" % (numSegments))
#ax = fig.add_subplot(1, 1, 1)
cv2.imshow('re',mark_boundaries(image, segments))
#plt.axis("off")
cv2.waitKey(0)
# show the plots
#plt.show()