-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
440 lines (389 loc) · 19.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os
import sys
import random
import time
from datetime import datetime
import numpy as np
import math
import torch.nn.functional as F
import torch as T
import argparse
random.seed(42)
from tqdm import tqdm
import dataset.my_ast
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format="%(message)s")
from tensorboardX import SummaryWriter # install tensorboardX (pip install tensorboardX) before importing this package
from dataset.my_ast import read_pickle
import torch
import dataset.my_ast
import models, configs, data_loader
from modules import get_cosine_schedule_with_warmup
from utils import similarity, normalize
from data_loader import *
from dataset.my_data_loader import DataLoaderX
from dataset.dataset import TreeDataSet
from model.utils import gelu, subsequent_mask, clones, relative_mask
try:
import nsml
from nsml import DATASET_PATH, IS_ON_NSML, SESSION_NAME
except:
IS_ON_NSML = False
# os.chdir("C:/Users/Administrator/PycharmProjects/pytorch")
def bind_nsml(model, **kwargs):
if type(model) == torch.nn.DataParallel: model = model.module
def infer(raw_data, **kwargs):
pass
def load(path, *args):
weights = torch.load(path)
model.load_state_dict(weights)
logger.info(f'Load checkpoints...!{path}')
def save(path, *args):
torch.save(model.state_dict(), os.path.join(path, 'model.pkl'))
logger.info(f'Save checkpoints...!{path}')
# function in function is just used to divide the namespace.
nsml.bind(save, load, infer)
def train(args, ast2id, code2id, nl2id, id2nl):
nl_vocab_size = len(nl2id)
use_relative = True
fh = logging.FileHandler(f"./output/{args.model}/{args.dataset}/logs.txt")
# create file handler which logs even debug messages
logger.addHandler(fh)# add the handlers to the logger
timestamp = datetime.now().strftime('%Y%m%d%H%M')
tb_writer = SummaryWriter(f"./output/{args.model}/{args.dataset}/logs/{timestamp}") if args.visual else None
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")
config=getattr(configs, 'config_'+args.model)()
if args.automl:
config.update(vars(args))
print(config)
###############################################################################
# Load data
###############################################################################
data_path = DATASET_PATH+"/train/" if IS_ON_NSML else args.data_path+args.dataset+'/'
'''
train_set = eval(config['dataset_name'])(data_path, config['train_name'], config['name_len'],
config['train_api'], config['api_len'],
config['train_tokens'], config['tokens_len'],
config['train_desc'], config['desc_len'])
valid_set = eval(config['dataset_name'])(data_path,
config['valid_name'], config['name_len'],
config['valid_api'], config['api_len'],
config['valid_tokens'], config['tokens_len'],
config['valid_desc'], config['desc_len'])
data_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=config['batch_size'],
shuffle=True, drop_last=True, num_workers=1)
'''
train_data_set = TreeDataSet(file_name=args.data_dir + '/train.json',
ast_path=args.data_dir + '/tree/train/',
ast2id=ast2id,
nl2id=nl2id,
max_ast_size=args.code_max_len,
max_simple_name_size=args.max_simple_name_len,
k=args.k,
max_comment_size=args.comment_max_len,
use_code=use_relative,
desc=config['train_desc'],
desclen=config['desc_len'])
data_loader = DataLoaderX(dataset=train_data_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=2)
###############################################################################
# Define Model
###############################################################################
logger.info('Constructing Model..')
model = getattr(models, args.model)(config, ast2id)#initialize the model
def save_model(model, ckpt_path):
# torch.save(model.state_dict(), ckpt_path)
torch.save(model,ckpt_path)
def load_model(model, ckpt_path, to_device):
assert os.path.exists(ckpt_path), f'Weights not found'
model.load_state_dict(torch.load(ckpt_path, map_location=to_device))
if args.reload_from>0:
ckpt = f'./output/{args.model}/{args.dataset}/models/step{args.reload_from}.h5'
# load_model(model, ckpt, device)
model=torch.load(ckpt)
else:
model.to(device)
if IS_ON_NSML:
bind_nsml(model)
# model.to(device)
###############################################################################
# Prepare the Optimizer
###############################################################################
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=config['learning_rate'], eps=config['adam_epsilon'])
scheduler = get_cosine_schedule_with_warmup(
optimizer, num_warmup_steps=config['warmup_steps'],
num_training_steps=len(data_loader)*config['nb_epoch']) # do not foget to modify the number when dataset is changed
if config['fp16']:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=config['fp16_opt_level'])
###############################################################################
# Training Process
###############################################################################
n_iters = len(data_loader)
itr_global = args.reload_from+1
code_reprs, desc_reprs = [], []
for epoch in range(int(args.reload_from/n_iters)+1, config['nb_epoch']+1):
itr_start_time = time.time()
losses=[]
n_processed = 0
for batch in data_loader:
model.train()
batch_gpu = [tensor.to(device).long() for tensor in batch]
loss = model(*batch_gpu)
# print(loss)
# code_repr=normalize(code_repr.data.cpu().numpy().astype(np.float32))
# desc_repr = normalize(desc_repr.data.cpu().numpy().astype(np.float32))
# code_reprs.append(code_repr)
# desc_reprs.append(desc_repr)
#n_processed += batch[0].size(0)
model.zero_grad()
if config['fp16']:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 5.0)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 5.0)
optimizer.step()
scheduler.step()
# model.zero_grad()
losses.append(loss.item())
if itr_global % args.log_every ==0:
elapsed = time.time() - itr_start_time
logger.info('epo:[%d/%d] itr:[%d/%d] step_time:%ds Loss=%.5f'%
(epoch, config['nb_epoch'], itr_global%n_iters, n_iters, elapsed, np.mean(losses)))
if tb_writer is not None:
tb_writer.add_scalar('loss', np.mean(losses), itr_global)
if IS_ON_NSML:
summary = {"summary": True, "scope": locals(), "step": itr_global}
summary.update({'loss':np.mean(losses)})
nsml.report(**summary)
losses=[]
itr_start_time = time.time()
itr_global = itr_global + 1
if itr_global % args.valid_every == 0:
logger.info("validating..")
# with torch.no_grad():
valid_result = validate(model, config['pool_size'], config['top_k'], config['sim_measure'])
logger.info(valid_result)
if tb_writer is not None:
for key, value in valid_result.items():
tb_writer.add_scalar(key, value, itr_global)
if IS_ON_NSML:
summary = {"summary": True, "scope": locals(), "step": itr_global}
summary.update(valid_result)
nsml.report(**summary)
code_reprs, desc_reprs = [], []
if itr_global % args.save_every == 0:
ckpt_path = f'./output/{args.model}/{args.dataset}/models/3step{itr_global}.h5'
save_model(model, ckpt_path)
if IS_ON_NSML:
nsml.save(checkpoint=f'model_step{itr_global}')
##### Evaluation #####
def validate(model, pool_size, K, sim_measure):
"""
simple validation in a code pool.
@param: poolsize - size of the code pool, if -1, load the whole test set
"""
config = getattr(configs, 'config_' + args.model)()
if args.automl:
config.update(vars(args))
print(config)
def ACC(real,predict):
sum=0.0
for val in real:
try: index=predict.index(val)
except ValueError: index=-1
if index!=-1: sum=sum+1
return sum/float(len(real))
def MAP(real,predict):
sum=0.0
for id, val in enumerate(real):
try: index=predict.index(val)
except ValueError: index=-1
if index!=-1: sum=sum+(id+1)/float(index+1)
return sum/float(len(real))
def MRR(real, predict):
sum=0.0
for val in real:
try: index = predict.index(val)
except ValueError: index=-1
if index!=-1: sum=sum+1.0/float(index+1)
return sum/float(len(real))
def NDCG(real, predict):
dcg=0.0
idcg=IDCG(len(real))
for i, predictItem in enumerate(predict):
if predictItem in real:
itemRelevance = 1
rank = i+1
dcg +=(math.pow(2,itemRelevance)-1.0)*(math.log(2)/math.log(rank+1))
return dcg/float(idcg)
def IDCG(n):
idcg=0
itemRelevance=1
for i in range(n): idcg+=(math.pow(2,itemRelevance)-1.0)*(math.log(2)/math.log(i+2))
return idcg
model.eval()
device = next(model.parameters()).device
valid_data_set = TreeDataSet(file_name=args.data_dir + '/valid2.json',
ast_path=args.data_dir + '/tree/train/',
ast2id=ast2id,
nl2id=nl2id,
max_ast_size=args.code_max_len,
max_simple_name_size=args.max_simple_name_len,
k=args.k,
max_comment_size=args.comment_max_len,
use_code=True,
desc=config['valid_desc'],
desclen=config['desc_len']
)
data_loader = DataLoaderX(dataset=valid_data_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=2)
accs, mrrs, maps, ndcgs,accs2=[],[],[],[],[]
code_reprs, desc_reprs = [], []
n_processed = 0
for batch in tqdm(data_loader):
with torch.no_grad():
batch_gpu = [tensor.to(device).long() for tensor in batch]
loss = model(*batch_gpu)
code_repr = model.getcodevec(*batch_gpu)
desc_repr = model.getdescvec(*batch_gpu)
x = code_repr.size()[0]
# print(desc_repr)
# print("_______________________________________________________________________________________\n")
for i in range(0, x): # 6 is the batchsize-1
code_reprs.append(code_repr[i])
desc_reprs.append(desc_repr[i])
n_processed += batch[0].size(0)
# code_reprs, desc_reprs = np.vstack(code_reprs), np.vstack(desc_reprs)
n_processed -= (n_processed % 100)
# for k in tqdm(range(0, n_processed - pool_size, pool_size)):
# code_pool, desc_pool = code_reprs[k:k + pool_size], desc_reprs[k:k + pool_size]
# sum = 0.0
# sum2 = 0.0
sum = 0.0
pool_size = 100 # random number of descs to cal the topk
for i in tqdm(range(0, pool_size)):
# for i in range(min(100000, pool_size)): # for i in range(pool_size):
ii = random.randint(0, 1000)
sims = []
desc_vec = desc_reprs[ii] # [1 x dim]
n_results = 20
desc_vec = T.stack([desc_vec, desc_vec], dim=0)
for l in range(0, 1000):
# for l in range(0, pool_size - 1):
codetemp = T.stack([code_reprs[l], code_reprs[l]], dim=0)
anchor_sim = F.cosine_similarity(codetemp, desc_vec)
sim = (0.1 + anchor_sim).clamp(min=1e-6).mean()
# sims.append(anchor_sim.mean())
sims.append(sim.item())
# print(sims)
negsims = np.negative(sims)
predict = np.argpartition(negsims, kth=n_results - 1) # predict=np.argsort(negsims)#
predict = predict[:n_results]
predict = [int(k) for k in predict]
real = [ii]
for val in real:
try:
index = predict.index(val)
except ValueError:
index = -1
if index != -1: sum = sum + 1
accs.append(sum / float(pool_size))
# accs.append(ACC(real,predict))
# mrrs.append(MRR(real,predict))
# maps.append(MAP(real,predict))
# ndcgs.append(NDCG(real,predict))
logger.info({'acc': np.mean(accs), 'err': 1 - np.mean(accs)})
return {'acc': np.mean(accs), 'err': 1 - np.mean(accs)}
def addCodeMaskToCalcuCodeRepr(model,code, relative_par_ids, relative_bro_ids, semantic_ids):
relative_par_mask = relative_par_ids == 0
relative_bro_mask = relative_bro_ids == 0
semantic_mask = semantic_ids == 0
code_mask = relative_mask([relative_par_mask, relative_bro_mask, semantic_mask], 6)
code_repr = model.code_encoding(code, relative_par_ids, relative_bro_ids, semantic_ids, code_mask)
return code_repr
def parse_args():
parser = argparse.ArgumentParser("Train and Validate The Code Search (Embedding) Model")
parser.add_argument('--data_path', type=str, default='./data/', help='location of the data corpus')
parser.add_argument('--reload_from', type=int, default=-1, help='epoch to reload from')
parser.add_argument('--gpu_id', type=int, default=0, help='GPU ID')
parser.add_argument('--visual',default=False, help="Visualize training status in tensorboard")
parser.add_argument('--automl', action='store_true', default=False, help='use automl')
# Training Arguments
parser.add_argument('--log_every', type=int, default=100, help='interval to log autoencoder training results')
parser.add_argument('--valid_every', type=int, default=20000, help='interval to validation')
parser.add_argument('--save_every', type=int, default=20000, help='interval to evaluation to concrete results')
parser.add_argument('--seed', type=int, default=1111, help='random seed')
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
# Model Hyperparameters for automl tuning
#parser.add_argument('--emb_size', type=int, default=-1, help = 'embedding dim')
parser.add_argument('--n_hidden', type=int, default= -1, help='number of hidden dimension of code/desc representation')
parser.add_argument('--lstm_dims', type=int, default= -1)
parser.add_argument('--margin', type=float, default= -1)
parser.add_argument('--sim_measure', type=str, default = 'cos', help='similarity measure for training')
parser.add_argument('--learning_rate', type=float, help='learning rate')
#parser.add_argument('--adam_epsilon', type=float)
#parser.add_argument("--weight_decay", type=float, help="Weight deay if we apply some.")
#parser.add_argument('--warmup_steps', type=int)
# reserved args for automl pbt
parser.add_argument('--pause', default=0, type=int)
parser.add_argument('--iteration', default=0, type=str)
##############################################################################################################################
#parser = argparse.ArgumentParser(description='tree transformer')
parser.add_argument('-model_dir', default='train_model', help='output model weight dir')
parser.add_argument('-batch_size', type=int, default=1)
parser.add_argument('--model', type=str, default='JointEmbeder', help='model name')
parser.add_argument('-num_step', type=int, default=250)
parser.add_argument('-num_layers', type=int, default=2, help='layer num')
parser.add_argument('-model_dim', type=int, default=384)
parser.add_argument('-num_heads', type=int, default=6)
parser.add_argument('-ffn_dim', type=int, default=1536)
parser.add_argument('-data_dir', default='./data')
parser.add_argument('-dataset', default='./dataset')
parser.add_argument('-code_max_len', type=int, default=100, help='max length of code')
parser.add_argument('-comment_max_len', type=int, default=30, help='comment max length')
parser.add_argument('-relative_pos', type=bool, default=True, help='use relative position')
parser.add_argument('-k', type=int, default=5, help='relative window size')
parser.add_argument('-max_simple_name_len', type=int, default=30, help='max simple name length')
parser.add_argument('-dropout', type=float, default=0.1)
parser.add_argument('-load', action='store_true', help='load pretrained model')
parser.add_argument('-train', action='store_true')
parser.add_argument('-test', action='store_true')
parser.add_argument('-load_epoch', type=str, default='0')
parser.add_argument('-log_dir', default='train_log/')
parser.add_argument('-g', type=int, default=1)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
i2code = read_pickle(args.data_dir + '/code_i2w.pkl')
i2nl = read_pickle(args.data_dir + '/nl_i2w.pkl')
i2ast = read_pickle(args.data_dir + '/ast_i2w.pkl')
ast2id = {v: k for k, v in i2ast.items()}
code2id = {v: k for k, v in i2code.items()}
nl2id = {v: k for k, v in i2nl.items()}
# make output directory if it doesn't already exist
os.makedirs(f'./output/{args.model}/{args.dataset}/models', exist_ok=True)
os.makedirs(f'./output/{args.model}/{args.dataset}/tmp_results', exist_ok=True)
torch.backends.cudnn.benchmark = True # speed up training by using cudnn
torch.backends.cudnn.deterministic = True # fix the random seed in cudnn
train(args,ast2id,code2id,nl2id,i2nl)