@@ -5,44 +5,46 @@ namespace Internal {
5
5
6
6
namespace {
7
7
8
+ using OO = ApproximationPrecision::OptimizationObjective;
9
+
8
10
// Generate this table with:
9
11
// python3 src/polynomial_optimizer.py atan --order 1 2 3 4 5 6 7 8 --loss mse mae mulpe mulpe_mae --no-gui --format table
10
12
std::vector<Approximation> table_atan = {
11
- {ApproximationPrecision ::MSE, 9.249650e-04 , 7.078984e-02 , 2.411547e +06 , {+8.56188008e-01 }},
12
- {ApproximationPrecision ::MSE, 1.026356e-05 , 9.214909e-03 , 3.985505e +05 , {+9.76213454e-01 , -2.00030200e-01 }},
13
- {ApproximationPrecision ::MSE, 1.577588e-07 , 1.323851e-03 , 6.724566e +04 , {+9.95982073e-01 , -2.92278128e-01 , +8.30180680e-02 }},
14
- {ApproximationPrecision ::MSE, 2.849011e-09 , 1.992218e-04 , 1.142204e +04 , {+9.99316541e-01 , -3.22286501e-01 , +1.49032461e-01 , -4.08635592e-02 }},
15
- {ApproximationPrecision ::MSE, 5.667504e-11 , 3.080100e-05 , 1.945614e +03 , {+9.99883373e-01 , -3.30599535e-01 , +1.81451316e-01 , -8.71733830e-02 , +2.18671936e-02 }},
16
- {ApproximationPrecision ::MSE, 1.202662e-12 , 4.846916e-06 , 3.318677e +02 , {+9.99980065e-01 , -3.32694393e-01 , +1.94019697e-01 , -1.17694732e-01 , +5.40822080e-02 , -1.22995279e-02 }},
17
- {ApproximationPrecision ::MSE, 2.672889e-14 , 7.722732e-07 , 5.664632e +01 , {+9.99996589e-01 , -3.33190090e-01 , +1.98232868e-01 , -1.32941469e-01 , +8.07623712e-02 , -3.46124853e-02 , +7.15115276e-03 }},
18
- {ApproximationPrecision ::MSE, 6.147315e-16 , 1.245768e-07 , 9.764224e +00 , {+9.99999416e-01 , -3.33302229e-01 , +1.99511173e-01 , -1.39332647e-01 , +9.70944891e-02 , -5.68823386e-02 , +2.25679012e-02 , -4.25772648e-03 }},
19
-
20
- {ApproximationPrecision ::MAE, 1.097847e-03 , 4.801638e-02 , 2.793645e +06 , {+8.33414544e-01 }},
21
- {ApproximationPrecision ::MAE, 1.209593e-05 , 4.968992e-03 , 4.623251e +05 , {+9.72410454e-01 , -1.91981283e-01 }},
22
- {ApproximationPrecision ::MAE, 1.839382e-07 , 6.107084e-04 , 7.766697e +04 , {+9.95360080e-01 , -2.88702052e-01 , +7.93508437e-02 }},
23
- {ApproximationPrecision ::MAE, 3.296902e-09 , 8.164167e-05 , 1.313615e +04 , {+9.99214108e-01 , -3.21178073e-01 , +1.46272006e-01 , -3.89915187e-02 }},
24
- {ApproximationPrecision ::MAE, 6.523525e-11 , 1.147459e-05 , 2.229646e +03 , {+9.99866373e-01 , -3.30305517e-01 , +1.80162434e-01 , -8.51611537e-02 , +2.08475020e-02 }},
25
- {ApproximationPrecision ::MAE, 1.378842e-12 , 1.667328e-06 , 3.792091e +02 , {+9.99977226e-01 , -3.32622991e-01 , +1.93541452e-01 , -1.16429278e-01 , +5.26504600e-02 , -1.17203722e-02 }},
26
- {ApproximationPrecision ::MAE, 3.055131e-14 , 2.480947e-07 , 6.457187e +01 , {+9.99996113e-01 , -3.33173716e-01 , +1.98078484e-01 , -1.32334692e-01 , +7.96260166e-02 , -3.36062649e-02 , +6.81247117e-03 }},
27
- {ApproximationPrecision ::MAE, 7.013215e-16 , 3.757868e-08 , 1.102324e +01 , {+9.99999336e-01 , -3.33298615e-01 , +1.99465749e-01 , -1.39086791e-01 , +9.64233077e-02 , -5.59142254e-02 , +2.18643190e-02 , -4.05495427e-03 }},
28
-
29
- {ApproximationPrecision ::MULPE, 1.355602e-03 , 1.067325e-01 , 1.808493e +06 , {+8.92130617e-01 }},
30
- {ApproximationPrecision ::MULPE, 2.100588e-05 , 1.075508e-02 , 1.822095e +05 , {+9.89111122e-01 , -2.14468039e-01 }},
31
- {ApproximationPrecision ::MULPE, 3.573985e-07 , 1.316370e-03 , 2.227347e +04 , {+9.98665077e-01 , -3.02990987e-01 , +9.10404434e-02 }},
32
- {ApproximationPrecision ::MULPE, 6.474958e-09 , 1.548508e-04 , 2.619892e +03 , {+9.99842198e-01 , -3.26272641e-01 , +1.56294460e-01 , -4.46207045e-02 }},
33
- {ApproximationPrecision ::MULPE, 1.313474e-10 , 2.533532e-05 , 4.294794e +02 , {+9.99974110e-01 , -3.31823782e-01 , +1.85886095e-01 , -9.30024008e-02 , +2.43894760e-02 }},
34
- {ApproximationPrecision ::MULPE, 3.007880e-12 , 3.530685e-06 , 5.983830e +01 , {+9.99996388e-01 , -3.33036463e-01 , +1.95959706e-01 , -1.22068745e-01 , +5.83403647e-02 , -1.37966171e-02 }},
35
- {ApproximationPrecision ::MULPE, 6.348880e-14 , 4.882649e-07 , 8.276351e +00 , {+9.99999499e-01 , -3.33273408e-01 , +1.98895454e-01 , -1.35153794e-01 , +8.43185278e-02 , -3.73434598e-02 , +7.95583230e-03 }},
36
- {ApproximationPrecision ::MULPE, 1.369569e-15 , 7.585036e-08 , 1.284979e +00 , {+9.99999922e-01 , -3.33320840e-01 , +1.99708563e-01 , -1.40257063e-01 , +9.93094012e-02 , -5.97138046e-02 , +2.44056181e-02 , -4.73371006e-03 }},
37
-
38
- {ApproximationPrecision ::MULPE_MAE, 9.548909e-04 , 6.131488e-02 , 2.570520e +06 , {+8.46713042e-01 }},
39
- {ApproximationPrecision ::MULPE_MAE, 1.159917e-05 , 6.746680e-03 , 3.778023e +05 , {+9.77449762e-01 , -1.98798279e-01 }},
40
- {ApproximationPrecision ::MULPE_MAE, 1.783646e-07 , 8.575388e-04 , 6.042236e +04 , {+9.96388826e-01 , -2.92591679e-01 , +8.24585555e-02 }},
41
- {ApproximationPrecision ::MULPE_MAE, 3.265269e-09 , 1.190548e-04 , 9.505190e +03 , {+9.99430906e-01 , -3.22774535e-01 , +1.49370817e-01 , -4.07480795e-02 }},
42
- {ApproximationPrecision ::MULPE_MAE, 6.574962e-11 , 1.684690e-05 , 1.515116e +03 , {+9.99909079e-01 , -3.30795737e-01 , +1.81810037e-01 , -8.72860225e-02 , +2.17776539e-02 }},
43
- {ApproximationPrecision ::MULPE_MAE, 1.380489e-12 , 2.497538e-06 , 2.510721e +02 , {+9.99984893e-01 , -3.32748885e-01 , +1.94193211e-01 , -1.17865932e-01 , +5.40633775e-02 , -1.22309990e-02 }},
44
- {ApproximationPrecision ::MULPE_MAE, 3.053218e-14 , 3.784868e-07 , 4.181995e +01 , {+9.99997480e-01 , -3.33205127e-01 , +1.98309644e-01 , -1.33094430e-01 , +8.08643094e-02 , -3.45859503e-02 , +7.11261604e-03 }},
45
- {ApproximationPrecision ::MULPE_MAE, 7.018877e-16 , 5.862915e-08 , 6.942196e +00 , {+9.99999581e-01 , -3.33306326e-01 , +1.99542180e-01 , -1.39433369e-01 , +9.72462857e-02 , -5.69734398e-02 , +2.25639390e-02 , -4.24074590e-03 }},
13
+ {OO ::MSE, 9.249650e-04 , 7.078984e-02 , 2.411e +06 , {+8.56188008e-01 }},
14
+ {OO ::MSE, 1.026356e-05 , 9.214909e-03 , 3.985e +05 , {+9.76213454e-01 , -2.00030200e-01 }},
15
+ {OO ::MSE, 1.577588e-07 , 1.323851e-03 , 6.724e +04 , {+9.95982073e-01 , -2.92278128e-01 , +8.30180680e-02 }},
16
+ {OO ::MSE, 2.849011e-09 , 1.992218e-04 , 1.142e +04 , {+9.99316541e-01 , -3.22286501e-01 , +1.49032461e-01 , -4.08635592e-02 }},
17
+ {OO ::MSE, 5.667504e-11 , 3.080100e-05 , 1.945e +03 , {+9.99883373e-01 , -3.30599535e-01 , +1.81451316e-01 , -8.71733830e-02 , +2.18671936e-02 }},
18
+ {OO ::MSE, 1.202662e-12 , 4.846916e-06 , 3.318e +02 , {+9.99980065e-01 , -3.32694393e-01 , +1.94019697e-01 , -1.17694732e-01 , +5.40822080e-02 , -1.22995279e-02 }},
19
+ {OO ::MSE, 2.672889e-14 , 7.722732e-07 , 5.664e +01 , {+9.99996589e-01 , -3.33190090e-01 , +1.98232868e-01 , -1.32941469e-01 , +8.07623712e-02 , -3.46124853e-02 , +7.15115276e-03 }},
20
+ {OO ::MSE, 6.147315e-16 , 1.245768e-07 , 9.764e +00 , {+9.99999416e-01 , -3.33302229e-01 , +1.99511173e-01 , -1.39332647e-01 , +9.70944891e-02 , -5.68823386e-02 , +2.25679012e-02 , -4.25772648e-03 }},
21
+
22
+ {OO ::MAE, 1.097847e-03 , 4.801638e-02 , 2.793e +06 , {+8.33414544e-01 }},
23
+ {OO ::MAE, 1.209593e-05 , 4.968992e-03 , 4.623e +05 , {+9.72410454e-01 , -1.91981283e-01 }},
24
+ {OO ::MAE, 1.839382e-07 , 6.107084e-04 , 7.766e +04 , {+9.95360080e-01 , -2.88702052e-01 , +7.93508437e-02 }},
25
+ {OO ::MAE, 3.296902e-09 , 8.164167e-05 , 1.313e +04 , {+9.99214108e-01 , -3.21178073e-01 , +1.46272006e-01 , -3.89915187e-02 }},
26
+ {OO ::MAE, 6.523525e-11 , 1.147459e-05 , 2.229e +03 , {+9.99866373e-01 , -3.30305517e-01 , +1.80162434e-01 , -8.51611537e-02 , +2.08475020e-02 }},
27
+ {OO ::MAE, 1.378842e-12 , 1.667328e-06 , 3.792e +02 , {+9.99977226e-01 , -3.32622991e-01 , +1.93541452e-01 , -1.16429278e-01 , +5.26504600e-02 , -1.17203722e-02 }},
28
+ {OO ::MAE, 3.055131e-14 , 2.480947e-07 , 6.457e +01 , {+9.99996113e-01 , -3.33173716e-01 , +1.98078484e-01 , -1.32334692e-01 , +7.96260166e-02 , -3.36062649e-02 , +6.81247117e-03 }},
29
+ {OO ::MAE, 7.013215e-16 , 3.757868e-08 , 1.102e +01 , {+9.99999336e-01 , -3.33298615e-01 , +1.99465749e-01 , -1.39086791e-01 , +9.64233077e-02 , -5.59142254e-02 , +2.18643190e-02 , -4.05495427e-03 }},
30
+
31
+ {OO ::MULPE, 1.355602e-03 , 1.067325e-01 , 1.808e +06 , {+8.92130617e-01 }},
32
+ {OO ::MULPE, 2.100588e-05 , 1.075508e-02 , 1.822e +05 , {+9.89111122e-01 , -2.14468039e-01 }},
33
+ {OO ::MULPE, 3.573985e-07 , 1.316370e-03 , 2.227e +04 , {+9.98665077e-01 , -3.02990987e-01 , +9.10404434e-02 }},
34
+ {OO ::MULPE, 6.474958e-09 , 1.548508e-04 , 2.619e +03 , {+9.99842198e-01 , -3.26272641e-01 , +1.56294460e-01 , -4.46207045e-02 }},
35
+ {OO ::MULPE, 1.313474e-10 , 2.533532e-05 , 4.294e +02 , {+9.99974110e-01 , -3.31823782e-01 , +1.85886095e-01 , -9.30024008e-02 , +2.43894760e-02 }},
36
+ {OO ::MULPE, 3.007880e-12 , 3.530685e-06 , 5.983e +01 , {+9.99996388e-01 , -3.33036463e-01 , +1.95959706e-01 , -1.22068745e-01 , +5.83403647e-02 , -1.37966171e-02 }},
37
+ {OO ::MULPE, 6.348880e-14 , 4.882649e-07 , 8.276e +00 , {+9.99999499e-01 , -3.33273408e-01 , +1.98895454e-01 , -1.35153794e-01 , +8.43185278e-02 , -3.73434598e-02 , +7.95583230e-03 }},
38
+ {OO ::MULPE, 1.369569e-15 , 7.585036e-08 , 1.284e +00 , {+9.99999922e-01 , -3.33320840e-01 , +1.99708563e-01 , -1.40257063e-01 , +9.93094012e-02 , -5.97138046e-02 , +2.44056181e-02 , -4.73371006e-03 }},
39
+
40
+ {OO ::MULPE_MAE, 9.548909e-04 , 6.131488e-02 , 2.570e +06 , {+8.46713042e-01 }},
41
+ {OO ::MULPE_MAE, 1.159917e-05 , 6.746680e-03 , 3.778e +05 , {+9.77449762e-01 , -1.98798279e-01 }},
42
+ {OO ::MULPE_MAE, 1.783646e-07 , 8.575388e-04 , 6.042e +04 , {+9.96388826e-01 , -2.92591679e-01 , +8.24585555e-02 }},
43
+ {OO ::MULPE_MAE, 3.265269e-09 , 1.190548e-04 , 9.505e +03 , {+9.99430906e-01 , -3.22774535e-01 , +1.49370817e-01 , -4.07480795e-02 }},
44
+ {OO ::MULPE_MAE, 6.574962e-11 , 1.684690e-05 , 1.515e +03 , {+9.99909079e-01 , -3.30795737e-01 , +1.81810037e-01 , -8.72860225e-02 , +2.17776539e-02 }},
45
+ {OO ::MULPE_MAE, 1.380489e-12 , 2.497538e-06 , 2.510e +02 , {+9.99984893e-01 , -3.32748885e-01 , +1.94193211e-01 , -1.17865932e-01 , +5.40633775e-02 , -1.22309990e-02 }},
46
+ {OO ::MULPE_MAE, 3.053218e-14 , 3.784868e-07 , 4.181e +01 , {+9.99997480e-01 , -3.33205127e-01 , +1.98309644e-01 , -1.33094430e-01 , +8.08643094e-02 , -3.45859503e-02 , +7.11261604e-03 }},
47
+ {OO ::MULPE_MAE, 7.018877e-16 , 5.862915e-08 , 6.942e +00 , {+9.99999581e-01 , -3.33306326e-01 , +1.99542180e-01 , -1.39433369e-01 , +9.72462857e-02 , -5.69734398e-02 , +2.25639390e-02 , -4.24074590e-03 }},
46
48
};
47
49
} // namespace
48
50
@@ -86,12 +88,13 @@ const Approximation *find_best_approximation(const std::vector<Approximation> &t
86
88
}
87
89
88
90
if (precision.constraint_max_absolute_error > 0.0 && precision.constraint_max_absolute_error < e.mae ) {
89
- penalty += 20 * extra_term_cost; // penalty for not getting the required precision.
91
+ float error_ratio = e.mae / precision.constraint_max_absolute_error ;
92
+ penalty += 20 * error_ratio * extra_term_cost; // penalty for not getting the required precision.
90
93
}
91
94
92
95
double score = obj_score + term_count_score + precision_score - penalty;
93
96
// std::printf("Score for %zu (%zu terms): %f = %d + %d + %f - penalty %f\n", i, e.coefficients.size(), score, obj_score, term_count_score, precision_score, penalty);
94
- if (score > best_score) {
97
+ if (score > best_score || best == nullptr ) {
95
98
best = &e;
96
99
best_score = score;
97
100
}
0 commit comments