-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
145 lines (99 loc) · 4.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import pickle
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import config as conf
from models.wgan import WGAN
def feature_normalize(features, feature_depth):
return (features/255 - 0.5) / 0.5
def feature_denormalize(features, feature_shape):
return (features + 1) / 2
def main():
model_spec_name = "%s-model-spec.json" % conf.MODEL_NAME
model_rslt_name = "%s-results.pickle" % conf.MODEL_NAME
model_save_path = os.path.join(conf.MODEL_SAVE_DIR, conf.MODEL_NAME)
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
model_ckpt_path = os.path.join(model_save_path, "model-ckpt")
model_spec_path = os.path.join(model_save_path, model_spec_name)
model_rslt_path = os.path.join(model_save_path, model_rslt_name)
hyparams = conf.HYPARAMS[conf.DATASET]
latent_depth = conf.LATENT_DEPTH
batch_size = conf.BATCH_SIZE
num_epochs = conf.NUM_EPOCHS
n_critic = conf.N_CRITIC
clip_const = conf.CLIP_CONST
loader, info = tfds.load(conf.DATASET, in_memory=True, with_info=True)
train_loader = loader["train"].repeat().shuffle(1024).batch(batch_size)
num_sets = info.splits["train"].num_examples
feature_shape = info.features["image"].shape
feature_depth = np.prod(feature_shape)
model = WGAN(
project_shape=hyparams["project_shape"],
gen_filters_list=hyparams["gen_filters_list"],
gen_strides_list=hyparams["gen_strides_list"],
disc_filters_list=hyparams["disc_filters_list"],
disc_strides_list=hyparams["disc_strides_list"]
)
generator_opt = tf.keras.optimizers.RMSprop(learning_rate=0.00005)
discriminator_opt = tf.keras.optimizers.RMSprop(learning_rate=0.00005)
@tf.function
def train_disc_step(x, z):
with tf.GradientTape() as discriminator_tape:
discriminator_loss = model.discriminator_loss(x, z)
grads_discriminator_loss = discriminator_tape.gradient(
target=discriminator_loss, sources=model.discriminator.trainable_variables
)
discriminator_opt.apply_gradients(
zip(grads_discriminator_loss, model.discriminator.trainable_variables)
)
return discriminator_loss
@tf.function
def train_gen_step(z):
with tf.GradientTape() as generator_tape:
generator_loss = model.generator_loss(z)
grads_generator_loss = generator_tape.gradient(
target=generator_loss, sources=model.generator.trainable_variables
)
generator_opt.apply_gradients(
zip(grads_generator_loss, model.generator.trainable_variables)
)
for w in model.discriminator.trainable_variables:
w.assign(tf.clip_by_value(w, -clip_const, clip_const))
return generator_loss
ckpt = tf.train.Checkpoint(generator=model.generator, discriminator=model.discriminator)
steps_per_epoch = num_sets // batch_size
train_steps = steps_per_epoch * num_epochs
generator_losses = []
discriminator_losses = []
generator_losses_epoch = []
discriminator_losses_epoch = []
x_fakes = []
for i in range(1, train_steps+1):
epoch = i // steps_per_epoch
print("Epoch: %i ====> %i / %i" % (epoch+1, i % steps_per_epoch, steps_per_epoch), end="\r")
for x in train_loader.take(1):
x_i = feature_normalize(x["image"], feature_depth)
z_i = np.random.normal(size=[batch_size, latent_depth]).astype(np.float32)
discriminator_loss_i = train_disc_step(x_i, z_i)
discriminator_losses.append(discriminator_loss_i)
if i % n_critic == 0:
generator_loss_i = train_gen_step(z_i)
generator_losses.append(generator_loss_i)
if i % steps_per_epoch == 0:
x_fake = model.generator(z_i, training=False)
x_fake = feature_denormalize(x_fake, feature_shape)
generator_loss_epoch = np.mean(generator_losses[-steps_per_epoch//n_critic:])
discriminator_loss_epoch = np.mean(discriminator_losses[-steps_per_epoch:])
print("Epoch: %i, Generator Loss: %f, Discriminator Loss: %f" % \
(epoch, generator_loss_epoch, discriminator_loss_epoch)
)
generator_losses_epoch.append(generator_loss_epoch)
discriminator_losses_epoch.append(discriminator_loss_epoch)
x_fakes.append(x_fake)
ckpt.save(file_prefix=model_ckpt_path)
with open(model_rslt_path, "wb") as f:
pickle.dump((generator_losses_epoch, discriminator_losses_epoch, x_fakes), f)
if __name__ == "__main__":
main()