@@ -37,17 +37,32 @@ def FCN_model(len_classes=5, dropout_rate=0.2):
37
37
x = tf .keras .layers .BatchNormalization ()(x )
38
38
x = tf .keras .layers .Activation ('relu' )(x )
39
39
40
- # x = tf.keras.layers.Flatten()(x)
41
- x = tf .keras .layers .GlobalMaxPooling2D ()(x )
40
+ # Uncomment the below line if you're using dense layers
41
+ # x = tf.keras.layers.GlobalMaxPooling2D()(x)
42
+
43
+ # Fully connected layer 1
44
+ # x = tf.keras.layers.Dropout(dropout_rate)(x)
45
+ # x = tf.keras.layers.BatchNormalization()(x)
46
+ # x = tf.keras.layers.Dense(units=64)(x)
47
+ # x = tf.keras.layers.Activation('relu')(x)
42
48
49
+ # Fully connected layer 1
50
+ x = tf .keras .layers .Conv2D (filters = 64 , kernel_size = 1 , strides = 1 )(x )
43
51
x = tf .keras .layers .Dropout (dropout_rate )(x )
44
52
x = tf .keras .layers .BatchNormalization ()(x )
45
- x = tf .keras .layers .Dense (units = 64 )(x )
46
53
x = tf .keras .layers .Activation ('relu' )(x )
47
54
55
+ # Fully connected layer 2
56
+ # x = tf.keras.layers.Dropout(dropout_rate)(x)
57
+ # x = tf.keras.layers.BatchNormalization()(x)
58
+ # x = tf.keras.layers.Dense(units=len_classes)(x)
59
+ # predictions = tf.keras.layers.Activation('softmax')(x)
60
+
61
+ # Fully connected layer 2
62
+ x = tf .keras .layers .Conv2D (filters = len_classes , kernel_size = 1 , strides = 1 )(x )
48
63
x = tf .keras .layers .Dropout (dropout_rate )(x )
49
64
x = tf .keras .layers .BatchNormalization ()(x )
50
- x = tf .keras .layers .Dense ( units = len_classes )(x )
65
+ x = tf .keras .layers .GlobalMaxPooling2D ( )(x )
51
66
predictions = tf .keras .layers .Activation ('softmax' )(x )
52
67
53
68
model = tf .keras .Model (inputs = input , outputs = predictions )
@@ -58,5 +73,5 @@ def FCN_model(len_classes=5, dropout_rate=0.2):
58
73
return model
59
74
60
75
if __name__ == "__main__" :
61
- FCN_model ()
76
+ FCN_model (len_classes = 5 , dropout_rate = 0.2 )
62
77
0 commit comments