@@ -13,8 +13,8 @@ Nl := AsLeftPresentation( HomalgMatrix( [ [ 3 ] ], 1, 1, ZZ ) );
13
13
Tl := TensorProductOnObjects( Ml, Nl );
14
14
# ! <An object in Category of left presentations of Z>
15
15
Display( UnderlyingMatrix( Tl ) );
16
- # ! [ [ 3 ],
17
- # ! [ 2 ] ]
16
+ # ! [ [ 2 ],
17
+ # ! [ 3 ] ]
18
18
IsZeroForObjects( Tl );
19
19
# ! true
20
20
Bl := Braiding( DirectSum( Ml, Nl ), DirectSum( Ml, Ml ) );
@@ -38,15 +38,15 @@ generator_l1 := StandardGeneratorMorphism( IntHoml, 1 );
38
38
morphism_l1 := LambdaElimination( DirectSum( Ml, Ul ), Nl, generator_l1 );
39
39
# ! <A morphism in Category of left presentations of Z>
40
40
Display( UnderlyingMatrix( morphism_l1 ) );
41
- # ! [ [ -3 ],
42
- # ! [ 2 ] ]
41
+ # ! [ [ -84 ],
42
+ # ! [ -196 ] ]
43
43
generator_l2 := StandardGeneratorMorphism( IntHoml, 2 );
44
44
# ! <A morphism in Category of left presentations of Z>
45
45
morphism_l2 := LambdaElimination( DirectSum( Ml, Ul ), Nl, generator_l2 );
46
46
# ! <A morphism in Category of left presentations of Z>
47
47
Display( UnderlyingMatrix( morphism_l2 ) );
48
- # ! [ [ 0 ],
49
- # ! [ -1 ] ]
48
+ # ! [ [ -39 ],
49
+ # ! [ -91 ] ]
50
50
IsEqualForMorphisms( LambdaIntroduction( morphism_l1 ), generator_l1 );
51
51
# ! false
52
52
IsCongruentForMorphisms( LambdaIntroduction( morphism_l1 ), generator_l1 );
@@ -62,7 +62,7 @@ Nr := AsRightPresentation( HomalgMatrix( [ [ 3 ] ], 1, 1, ZZ ) );
62
62
Tr := TensorProductOnObjects( Mr, Nr );
63
63
# ! <An object in Category of right presentations of Z>
64
64
Display( UnderlyingMatrix( Tr ) );
65
- # ! [ [ 3 , 2 ] ]
65
+ # ! [ [ 2 , 3 ] ]
66
66
IsZeroForObjects( Tr );
67
67
# ! true
68
68
Br := Braiding( DirectSum( Mr, Nr ), DirectSum( Mr, Mr ) );
@@ -86,14 +86,14 @@ generator_r1 := StandardGeneratorMorphism( IntHomr, 1 );
86
86
morphism_r1 := LambdaElimination( DirectSum( Mr, Ur ), Nr, generator_r1 );
87
87
# ! <A morphism in Category of right presentations of Z>
88
88
Display( UnderlyingMatrix( morphism_r1 ) );
89
- # ! [ [ -3 , 2 ] ]
89
+ # ! [ [ -84 , -196 ] ]
90
90
generator_r2 := StandardGeneratorMorphism( IntHoml, 2 );
91
91
# ! <A morphism in Category of left presentations of Z>
92
92
morphism_r2 := LambdaElimination( DirectSum( Ml, Ul ), Nl, generator_r2 );
93
93
# ! <A morphism in Category of left presentations of Z>
94
94
Display( UnderlyingMatrix( morphism_r2 ) );
95
- # ! [ [ 0 ],
96
- # ! [ -1 ] ]
95
+ # ! [ [ -39 ],
96
+ # ! [ -91 ] ]
97
97
IsEqualForMorphisms( LambdaIntroduction( morphism_r1 ), generator_r1 );
98
98
# ! false
99
99
IsCongruentForMorphisms( LambdaIntroduction( morphism_r1 ), generator_r1 );
0 commit comments