-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add deepseek v2 * Fix * Remove unused * Add kv cache * Remove from cargo.toml * Fix dtype selection logic * Fix unnecessary u32->f32->gather->u32 * Remove fromstr impl * Use local scopes for some clarity * Typo * Repeat k_pe * Chain calls to remove mut * Actually, remove all muts * Update readme
- Loading branch information
1 parent
fd7f724
commit e6cc76f
Showing
4 changed files
with
1,367 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
# DeepSeek V2 | ||
|
||
DeepSeek V2 an MoE model featuring MLA (Multi-Latent Attention). There is a lite (16B) and a full (236B) model. | ||
|
||
- Context length of **32k tokens** (Lite model), **128k tokens** (full model) | ||
- 64 routed experts (Lite model), 160 routed experts (full model) | ||
|
||
## Running the example | ||
|
||
```bash | ||
$ cargo run --example deepseekv2 --release --features metal -- --prompt "Recursive fibonacci code in Rust:" --which lite --sample-len 150 | ||
|
||
fn fibonacci(n: u32) -> u32 { | ||
if n <= 1 { | ||
return n; | ||
} else { | ||
return fibonacci(n - 1) + fibonacci(n - 2); | ||
} | ||
} | ||
|
||
## Fibonacci code in Python: | ||
|
||
def fibonacci(n): | ||
if n <= 1: | ||
return n | ||
else: | ||
return fibonacci(n-1) + fibonacci(n-2) | ||
|
||
## Fibonacci code in JavaScript: | ||
|
||
function fibonacci(n) { | ||
if (n <= 1 | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
#[cfg(feature = "mkl")] | ||
extern crate intel_mkl_src; | ||
|
||
#[cfg(feature = "accelerate")] | ||
extern crate accelerate_src; | ||
|
||
use anyhow::{Error as E, Result}; | ||
use clap::Parser; | ||
|
||
use candle_transformers::models::deepseek2::{DeepSeekV2, DeepSeekV2Config}; | ||
|
||
use candle::{DType, Device, Tensor}; | ||
use candle_examples::token_output_stream::TokenOutputStream; | ||
use candle_nn::VarBuilder; | ||
use candle_transformers::generation::{LogitsProcessor, Sampling}; | ||
use hf_hub::{api::sync::Api, Repo, RepoType}; | ||
use tokenizers::Tokenizer; | ||
|
||
struct TextGeneration { | ||
model: DeepSeekV2, | ||
device: Device, | ||
tokenizer: TokenOutputStream, | ||
logits_processor: LogitsProcessor, | ||
repeat_penalty: f32, | ||
repeat_last_n: usize, | ||
} | ||
|
||
impl TextGeneration { | ||
#[allow(clippy::too_many_arguments)] | ||
fn new( | ||
model: DeepSeekV2, | ||
tokenizer: Tokenizer, | ||
seed: u64, | ||
temp: Option<f64>, | ||
top_p: Option<f64>, | ||
top_k: Option<usize>, | ||
repeat_penalty: f32, | ||
repeat_last_n: usize, | ||
device: &Device, | ||
) -> Self { | ||
let logits_processor = { | ||
let temperature = temp.unwrap_or(0.); | ||
let sampling = if temperature <= 0. { | ||
Sampling::ArgMax | ||
} else { | ||
match (top_k, top_p) { | ||
(None, None) => Sampling::All { temperature }, | ||
(Some(k), None) => Sampling::TopK { k, temperature }, | ||
(None, Some(p)) => Sampling::TopP { p, temperature }, | ||
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature }, | ||
} | ||
}; | ||
LogitsProcessor::from_sampling(seed, sampling) | ||
}; | ||
|
||
Self { | ||
model, | ||
tokenizer: TokenOutputStream::new(tokenizer), | ||
logits_processor, | ||
repeat_penalty, | ||
repeat_last_n, | ||
device: device.clone(), | ||
} | ||
} | ||
|
||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> { | ||
use std::io::Write; | ||
self.tokenizer.clear(); | ||
let mut tokens = self | ||
.tokenizer | ||
.tokenizer() | ||
.encode(prompt, true) | ||
.map_err(E::msg)? | ||
.get_ids() | ||
.to_vec(); | ||
for &t in tokens.iter() { | ||
if let Some(t) = self.tokenizer.next_token(t)? { | ||
print!("{t}") | ||
} | ||
} | ||
std::io::stdout().flush()?; | ||
|
||
let mut generated_tokens = 0usize; | ||
let eos_token = match self.tokenizer.get_token("<|end▁of▁sentence|>") { | ||
Some(token) => token, | ||
None => anyhow::bail!("cannot find the <|end▁of▁sentence|> token"), | ||
}; | ||
let start_gen = std::time::Instant::now(); | ||
for index in 0..sample_len { | ||
let context_size = if index > 0 { 1 } else { tokens.len() }; | ||
let start_pos = tokens.len().saturating_sub(context_size); | ||
let ctxt = &tokens[start_pos..]; | ||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?; | ||
let logits = self.model.forward(&input, start_pos)?; | ||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?; | ||
let logits = if self.repeat_penalty == 1. { | ||
logits | ||
} else { | ||
let start_at = tokens.len().saturating_sub(self.repeat_last_n); | ||
candle_transformers::utils::apply_repeat_penalty( | ||
&logits, | ||
self.repeat_penalty, | ||
&tokens[start_at..], | ||
)? | ||
}; | ||
|
||
let next_token = self.logits_processor.sample(&logits)?; | ||
tokens.push(next_token); | ||
generated_tokens += 1; | ||
if next_token == eos_token { | ||
break; | ||
} | ||
if let Some(t) = self.tokenizer.next_token(next_token)? { | ||
print!("{t}"); | ||
std::io::stdout().flush()?; | ||
} | ||
} | ||
let dt = start_gen.elapsed(); | ||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? { | ||
print!("{rest}"); | ||
} | ||
std::io::stdout().flush()?; | ||
println!( | ||
"\n{generated_tokens} tokens generated ({:.2} token/s)", | ||
generated_tokens as f64 / dt.as_secs_f64(), | ||
); | ||
Ok(()) | ||
} | ||
} | ||
|
||
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)] | ||
enum Which { | ||
#[value(name = "lite")] | ||
Lite, | ||
#[value(name = "lite-chat")] | ||
LiteChat, | ||
#[value(name = "coder-lite-chat")] | ||
CoderLiteChat, | ||
#[value(name = "v2")] | ||
V2, | ||
#[value(name = "v2-chat")] | ||
V2Chat, | ||
} | ||
|
||
#[derive(Parser, Debug)] | ||
#[command(author, version, about, long_about = None)] | ||
struct Args { | ||
/// Run on CPU rather than on GPU. | ||
#[arg(long)] | ||
cpu: bool, | ||
|
||
/// Enable tracing (generates a trace-timestamp.json file). | ||
#[arg(long)] | ||
tracing: bool, | ||
|
||
#[arg(long)] | ||
use_flash_attn: bool, | ||
|
||
#[arg(long)] | ||
prompt: String, | ||
|
||
/// The temperature used to generate samples. | ||
#[arg(long)] | ||
temperature: Option<f64>, | ||
|
||
/// Nucleus sampling probability cutoff. | ||
#[arg(long)] | ||
top_p: Option<f64>, | ||
|
||
/// Only sample among the top K samples. | ||
#[arg(long)] | ||
top_k: Option<usize>, | ||
|
||
/// The seed to use when generating random samples. | ||
#[arg(long, default_value_t = 299792458)] | ||
seed: u64, | ||
|
||
/// The length of the sample to generate (in tokens). | ||
#[arg(long, short = 'n', default_value_t = 10000)] | ||
sample_len: usize, | ||
|
||
/// The model size to use. | ||
#[arg(long, default_value = "lite")] | ||
which: Which, | ||
|
||
#[arg(long)] | ||
model_id: Option<String>, | ||
|
||
#[arg(long, default_value = "main")] | ||
revision: String, | ||
|
||
/// Penalty to be applied for repeating tokens, 1. means no penalty. | ||
#[arg(long, default_value_t = 1.1)] | ||
repeat_penalty: f32, | ||
|
||
/// The context size to consider for the repeat penalty. | ||
#[arg(long, default_value_t = 64)] | ||
repeat_last_n: usize, | ||
} | ||
|
||
fn main() -> Result<()> { | ||
use tracing_chrome::ChromeLayerBuilder; | ||
use tracing_subscriber::prelude::*; | ||
|
||
let args = Args::parse(); | ||
|
||
let _guard = if args.tracing { | ||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); | ||
tracing_subscriber::registry().with(chrome_layer).init(); | ||
Some(guard) | ||
} else { | ||
None | ||
}; | ||
println!( | ||
"avx: {}, neon: {}, simd128: {}, f16c: {}", | ||
candle::utils::with_avx(), | ||
candle::utils::with_neon(), | ||
candle::utils::with_simd128(), | ||
candle::utils::with_f16c() | ||
); | ||
println!( | ||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}", | ||
args.temperature.unwrap_or(0.), | ||
args.repeat_penalty, | ||
args.repeat_last_n | ||
); | ||
|
||
let start = std::time::Instant::now(); | ||
let api = Api::new()?; | ||
let model_id = match args.model_id { | ||
Some(model_id) => model_id, | ||
None => match args.which { | ||
Which::CoderLiteChat => "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct".to_string(), | ||
Which::LiteChat => "deepseek-ai/DeepSeek-V2-Lite-Chat".to_string(), | ||
Which::Lite => "deepseek-ai/DeepSeek-V2-Lite".to_string(), | ||
Which::V2 => "deepseek-ai/DeepSeek-V2".to_string(), | ||
Which::V2Chat => "deepseek-ai/DeepSeek-V2-Chat".to_string(), | ||
}, | ||
}; | ||
let repo = api.repo(Repo::with_revision( | ||
model_id, | ||
RepoType::Model, | ||
args.revision, | ||
)); | ||
let tokenizer_filename = repo.get("tokenizer.json")?; | ||
let filenames = candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?; | ||
println!("retrieved the files in {:?}", start.elapsed()); | ||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; | ||
|
||
let start = std::time::Instant::now(); | ||
let config: DeepSeekV2Config = { | ||
let config_file = repo.get("config.json")?; | ||
serde_json::from_slice(&std::fs::read(config_file)?)? | ||
}; | ||
let device = candle_examples::device(args.cpu)?; | ||
let (model, device) = { | ||
let dtype = if device.is_cpu() { | ||
DType::F16 | ||
} else { | ||
DType::BF16 | ||
}; | ||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? }; | ||
let model = DeepSeekV2::new(&config, vb)?; | ||
(model, device) | ||
}; | ||
|
||
println!("loaded the model in {:?}", start.elapsed()); | ||
|
||
let mut pipeline = TextGeneration::new( | ||
model, | ||
tokenizer, | ||
args.seed, | ||
args.temperature, | ||
args.top_p, | ||
args.top_k, | ||
args.repeat_penalty, | ||
args.repeat_last_n, | ||
&device, | ||
); | ||
pipeline.run(&args.prompt, args.sample_len)?; | ||
Ok(()) | ||
} |
Oops, something went wrong.