Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AttributeError when accessing .logits from BLIP-2 model output during conversion #34704

Open
1 of 4 tasks
thisisiron opened this issue Nov 12, 2024 · 0 comments
Open
1 of 4 tasks
Labels

Comments

@thisisiron
Copy link
Contributor

thisisiron commented Nov 12, 2024

System Info

  • transformers version: 4.47.0.dev0
  • Platform: Linux-5.15.0-94-generic-x86_64-with-glibc2.35
  • Python version: 3.10.15
  • Huggingface_hub version: 0.26.2
  • Safetensors version: 0.4.5
  • Accelerate version: 1.1.1
  • Accelerate config: not found
  • PyTorch version (GPU?): 2.4.0+cu118 (True)
  • Tensorflow version (GPU?): 2.15.1 (False)
  • Flax version (CPU?/GPU?/TPU?): 0.7.0 (cpu)
  • Jax version: 0.4.13
  • JaxLib version: 0.4.13
  • Using distributed or parallel set-up in script?:
  • Using GPU in script?:
  • GPU type: NVIDIA H100 80GB HBM3

Who can help?

@amyeroberts, @qubvel

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • My own task or dataset (give details below)

Reproduction

When trying to convert BLIP-2 checkpoints using the transformers conversion script(convert_blip_2_original_to_pytorch.py), the following error occurs:

Traceback (most recent call last):
  File "/workspace/image_captioning/eon/transformers/src/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py", line 388, in <module>
    convert_blip2_checkpoint(
  File "/opt/conda/envs/llava/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/workspace/image_captioning/eon/transformers/src/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py", line 298, in convert_blip2_checkpoint
    original_logits = original_model({"image": original_pixel_values, "text_input": [""]}).logits
AttributeError: 'dict' object has no attribute 'logits'

The error occurs because the LAVIS BLIP-2 implementation's forward method only returns a dictionary containing the loss value.

...
    def forward(self, samples):
        image = samples["image"]
        with self.maybe_autocast():
            image_embeds = self.ln_vision(self.visual_encoder(image))
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
            image.device
        )

        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
        query_output = self.Qformer.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            return_dict=True,
        )

        inputs_opt = self.opt_proj(query_output.last_hidden_state)
        atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(image.device)

        self.opt_tokenizer.padding_side = "right"

        text = [t + "\n" for t in samples["text_input"]]

        opt_tokens = self.opt_tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
        ).to(image.device)

        targets = opt_tokens.input_ids.masked_fill(
            opt_tokens.input_ids == self.opt_tokenizer.pad_token_id, -100
        )
        if self.prompt:
            targets[:, : self.prompt_length] = -100  # do not apply loss to the prompt

        empty_targets = (
            torch.ones(atts_opt.size(), dtype=torch.long).to(image.device).fill_(-100)
        )
        targets = torch.cat([empty_targets, targets], dim=1)

        inputs_embeds = self.opt_model.model.decoder.embed_tokens(opt_tokens.input_ids)
        inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
        attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)

        with self.maybe_autocast():
            outputs = self.opt_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                return_dict=True,
                labels=targets,
            )
        loss = outputs.loss

        return {"loss": loss}

Expected behavior

The BLIP-2 model forward pass should return both loss and logits in its output dictionary to be compatible with the transformers conversion script, like this:

return {
    "loss": loss,
    "logits": outputs.logits  # Currently missing in LAVIS implementation
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant