This repository was archived by the owner on Jan 7, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 781
This repository was archived by the owner on Jan 7, 2025. It is now read-only.
ISR Traininig error Colab #253
Copy link
Copy link
Open
Description
I tried to use the Colab ISR Traininig tutorial.ipynb
, despite the modification in the first line !pip install ISR
to !pip install ISR --no-deps
and install tensorflow before (!pip install tensorflow
), and change nothing more, just only replicate the example in step Give the models to the Trainer:
from ISR.train import Trainer
loss_weights = {
'generator': 0.0,
'feature_extractor': 0.0833,
'discriminator': 0.01
}
losses = {
'generator': 'mae',
'feature_extractor': 'mse',
'discriminator': 'binary_crossentropy'
}
log_dirs = {'logs': './logs', 'weights': './weights'}
learning_rate = {'initial_value': 0.0004, 'decay_factor': 0.5, 'decay_frequency': 30}
flatness = {'min': 0.0, 'max': 0.15, 'increase': 0.01, 'increase_frequency': 5}
trainer = Trainer(
generator=rrdn,
discriminator=discr,
feature_extractor=f_ext,
lr_train_dir='div2k/DIV2K_train_LR_bicubic/X2/',
hr_train_dir='div2k/DIV2K_train_HR/',
lr_valid_dir='div2k/DIV2K_train_LR_bicubic/X2/',
hr_valid_dir='div2k/DIV2K_train_HR/',
loss_weights=loss_weights,
learning_rate=learning_rate,
flatness=flatness,
dataname='div2k',
log_dirs=log_dirs,
weights_generator=None,
weights_discriminator=None,
n_validation=40,
)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
[<ipython-input-6-5b1979e121e0>](https://localhost:8080/#) in <cell line: 19>()
17 flatness = {'min': 0.0, 'max': 0.15, 'increase': 0.01, 'increase_frequency': 5}
18
---> 19 trainer = Trainer(
20 generator=rrdn,
21 discriminator=discr,
4 frames
[/usr/local/lib/python3.10/dist-packages/ISR/train/trainer.py](https://localhost:8080/#) in __init__(self, generator, discriminator, feature_extractor, lr_train_dir, hr_train_dir, lr_valid_dir, hr_valid_dir, loss_weights, log_dirs, fallback_save_every_n_epochs, dataname, weights_generator, weights_discriminator, n_validation, flatness, learning_rate, adam_optimizer, losses, metrics)
103 self.metrics['generator'] = PSNR
104 self._parameters_sanity_check()
--> 105 self.model = self._combine_networks()
106
107 self.settings = {}
[/usr/local/lib/python3.10/dist-packages/ISR/train/trainer.py](https://localhost:8080/#) in _combine_networks(self)
197 combined = Model(inputs=lr, outputs=outputs)
198 # https://stackoverflow.com/questions/42327543/adam-optimizer-goes-haywire-after-200k-batches-training-loss-grows
--> 199 optimizer = Adam(
200 beta_1=self.adam_optimizer['beta1'],
201 beta_2=self.adam_optimizer['beta2'],
[/usr/local/lib/python3.10/dist-packages/keras/src/optimizers/adam.py](https://localhost:8080/#) in __init__(self, learning_rate, beta_1, beta_2, epsilon, amsgrad, weight_decay, clipnorm, clipvalue, global_clipnorm, use_ema, ema_momentum, ema_overwrite_frequency, loss_scale_factor, gradient_accumulation_steps, name, **kwargs)
60 **kwargs,
61 ):
---> 62 super().__init__(
63 learning_rate=learning_rate,
64 name=name,
[/usr/local/lib/python3.10/dist-packages/keras/src/backend/tensorflow/optimizer.py](https://localhost:8080/#) in __init__(self, *args, **kwargs)
20
21 def __init__(self, *args, **kwargs):
---> 22 super().__init__(*args, **kwargs)
23 self._distribution_strategy = tf.distribute.get_strategy()
24
[/usr/local/lib/python3.10/dist-packages/keras/src/optimizers/base_optimizer.py](https://localhost:8080/#) in __init__(self, learning_rate, weight_decay, clipnorm, clipvalue, global_clipnorm, use_ema, ema_momentum, ema_overwrite_frequency, loss_scale_factor, gradient_accumulation_steps, name, **kwargs)
35 )
36 if kwargs:
---> 37 raise ValueError(f"Argument(s) not recognized: {kwargs}")
38
39 if name is None:
ValueError: Argument(s) not recognized: {'lr': 0.0004}
Many errors occur. Please, any help with it?
Metadata
Metadata
Assignees
Labels
No labels