-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutils.py
43 lines (34 loc) · 1.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader
from data import MyDataset
def set_seed(seed):
# Reproducibility
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
random.seed(seed)
np.random.seed(seed)
def get_data_loaders(config):
num_workers = config.num_workers
data = config.data
data_root = config.data_root
batch_size = config.batch_size
image_size = config.image_size
train_csv = config.train_csv
test_csv = config.test_csv
train_loader = get_data_loader(data, data_root, os.path.join(data_root, data, train_csv), batch_size, image_size, True, num_workers)
test_loader = get_data_loader(data, data_root, os.path.join(data_root, data, test_csv), batch_size, image_size, False, num_workers)
return train_loader, test_loader
def get_data_loader(data, data_root, csv_file, batch_size, image_size, train, num_workers=4):
dataset = MyDataset(data, data_root, csv_file, (image_size, image_size), train)
loader = DataLoader(
dataset=dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=train,
collate_fn=dataset.collate_fn)
return loader