-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmain.py
197 lines (159 loc) · 5.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import tensorflow as tf
import os
import numpy as np
from model import GenreLSTM
parser = argparse.ArgumentParser(description='How to run this')
parser.add_argument(
"-current_run",
type=str,
help="The name of the model which will also be the name of the session's folder."
)
parser.add_argument(
"-data_dir",
type=str,
default="./data",
help="Directory of datasets"
)
parser.add_argument(
"-data_set",
type=str,
default="test",
help="The name of training dataset"
)
parser.add_argument(
"-runs_dir",
type=str,
default="./runs",
help="The name of the model which will also be the name of the session folder"
)
parser.add_argument(
"-bi",
help="True for bidirectional",
action='store_true'
)
parser.add_argument(
"-forward_only",
action='store_true',
help="True for forward only, False for training [False]"
)
parser.add_argument(
"-load_model",
type=str,
default=None,
help="Folder name of model to load"
)
parser.add_argument(
"-load_last",
action='store_true',
help="Start from last epoch"
)
args = parser.parse_args()
def setup_dir():
print('[*] Setting up directory...')
main_path = args.runs_dir
current_run = os.path.join(main_path, args.current_run)
files_path = args.data_dir
files_path = os.path.join(files_path, args.data_set)
x_path = os.path.join(files_path, 'inputs')
y_path = os.path.join(files_path, 'velocities')
eval_path = os.path.join(files_path, 'eval')
model_path = os.path.join(current_run, 'model')
logs_path = os.path.join(current_run, 'tmp')
png_path = os.path.join(current_run, 'png')
pred_path = os.path.join(current_run, 'predictions')
if not os.path.exists(current_run):
os.makedirs(current_run)
if not os.path.exists(logs_path):
os.makedirs(logs_path)
if not os.path.exists(model_path):
os.makedirs(model_path)
if not os.path.exists(png_path):
os.makedirs(png_path)
if not os.path.exists(pred_path):
os.makedirs(pred_path)
dirs = {
'main_path': main_path,
'current_run': current_run,
'model_path': model_path,
'logs_path': logs_path,
'png_path': png_path,
'eval_path': eval_path,
'pred_path': pred_path,
'x_path': x_path,
'y_path': y_path
}
# print main_path
# print current_run
# print model_path
# print logs_path
# print png_path
# print eval_path
# print x_path
# print y_path
return dirs
def load_training_data(x_path, y_path, genre):
X_data = []
Y_data = []
names = []
print('[*] Loading data...')
x_path = os.path.join(x_path, genre)
y_path = os.path.join(y_path, genre)
for i, filename in enumerate(os.listdir(x_path)):
if filename.split('.')[-1] == 'npy':
names.append(filename)
for i, filename in enumerate(names):
abs_x_path = os.path.join(x_path,filename)
abs_y_path = os.path.join(y_path,filename)
loaded_x = np.load(abs_x_path)
X_data.append(loaded_x)
loaded_y = np.load(abs_y_path)
loaded_y = loaded_y/127
Y_data.append(loaded_y)
assert X_data[i].shape[0] == Y_data[i].shape[0]
return X_data, Y_data
def prepare_data():
dirs = setup_dir()
data = {}
data["classical"] = {}
data["jazz"] = {}
c_train_X , c_train_Y = load_training_data(dirs['x_path'], dirs['y_path'], "classical")
data["classical"]["X"] = c_train_X
data["classical"]["Y"] = c_train_Y
j_train_X , j_train_Y = load_training_data(dirs['x_path'], dirs['y_path'], "jazz")
data["jazz"]["X"] = j_train_X
data["jazz"]["Y"] = j_train_Y
return dirs, data
def main():
tf.logging.set_verbosity(tf.logging.ERROR)
dirs, data = prepare_data()
network = GenreLSTM(dirs, input_size=176, mini=True, bi=args.bi)
network.prepare_model()
if not args.forward_only:
if args.load_model:
loaded_epoch = args.load_model.split('.')[0]
loaded_epoch = loaded_epoch.split('-')[-1]
loaded_epoch = loaded_epoch[1:]
print("[*] Loading " + args.load_model + " and continuing from " + loaded_epoch + ".")
loaded_epoch = int(loaded_epoch)
network.train(data, model=args.load_model, starting_epoch=loaded_epoch+1)
elif args.load_last:
tree = os.listdir(dirs["model_path"])
tree.remove('checkpoint')
files = [(int(file.split('.')[0].split('-')[-1][1:]), file.split('.')[0]) for file in tree]
files.sort(key = lambda t: t[0])
# print files
last = files[-1][1]
last = last + ".ckpt"
loaded_epoch = files[-1][0]
# loaded_epoch = last.split('-')[-1]
# loaded_epoch = loaded_epoch[1:]
# last = last + ".ckpt"
print("[*] Loading " + last + " and continuing from " + str(loaded_epoch) + ".")
network.train(data, model=last, starting_epoch=loaded_epoch+1)
else:
network.train(data)
else:
network.load(args.load_model)
if __name__ == '__main__':
main()