-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
286 lines (246 loc) · 12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import argparse
import os
import random
import sys
import time
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.cuda.amp import GradScaler as GradScaler
from torch.cuda.amp import autocast as autocast
from torch.nn.parallel import DistributedDataParallel
import models_cifar
import models_imagenet
from dataset import create_loader
from loss import *
from utils import *
scaler = GradScaler()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--name', required=True, type=str)
parser.add_argument('--data', default='cifar100', type=str, help='cifar10|cifar100|imagenet')
parser.add_argument('--data_dir', type=str, default='/data/datasets/cls/cifar')
parser.add_argument('--save_dir', type=str, default='./logs')
parser.add_argument('--model_file', default='resnet', type=str, help='model type')
parser.add_argument('--model_name', default='resnet18', type=str, help='model type in detail')
parser.add_argument('--epoch', default=200, type=int)
parser.add_argument('--optimizer', default='sgd', type=str, help='sgd|adamw')
parser.add_argument('--scheduler', default='cos', type=str, help='step|cos')
parser.add_argument('--schedule', default=[100, 150], type=int, nargs='+')
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--warmup', default=0, type=int)
parser.add_argument('--lr', default=0.1, type=float)
parser.add_argument('--lr_decay', default=0.1, type=float)
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument('--nesterov', action='store_true', help='enables Nesterov momentum (default: False)')
parser.add_argument('--ddp', default=True, type=str2bool, help='nn.DataParallel|DistributedDataParallel')
parser.add_argument('--smoothing', default=0.0, type=float, help='Label smoothing (default: 0.0)')
parser.add_argument('--save_model', action='store_true')
parser.add_argument('--print_freq', default=100, type=int)
parser.add_argument('--random_seed', default=27, type=int)
parser.add_argument('--num_workers', default=16, type=int)
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('--pretrained', action='store_true', help='use pretrained models')
parser.add_argument('--fold', default=1, type=int, help='training fold')
parser.add_argument('--strict', default=True, type=str2bool, help='args for resume training: load_state_dict')
# augmentation
parser.add_argument('--aug', default='none', type=str, help='mixup|cutmix')
parser.add_argument('--aug_alpha', default=0.5, type=float, help='alpha of RM')
parser.add_argument('--aug_omega', default=0.5, type=float, help='omega of RM')
parser.add_argument('--aug_plus', action='store_true')
parser.add_argument('--interpolate_mode', default='nearest', type=str, help='nearest|bilinear')
parser.add_argument('--share_fc', action='store_true')
parser.add_argument('--repeated_aug', action='store_true')
args = parser.parse_args()
# set random seed
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
args.nprocs = torch.cuda.device_count()
if args.ddp:
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
args.batch_size = int(args.batch_size / args.nprocs)
args.num_workers = int((args.num_workers + args.nprocs - 1) / args.nprocs)
# creat logger
creat_time = time.strftime("%Y%m%d%H%M%S", time.localtime())
args.path_log = os.path.join(args.save_dir, f'{args.data}', f'{args.name}')
os.makedirs(args.path_log, exist_ok=True)
logger = create_logging(os.path.join(args.path_log, '%s_fold%s.log' % (creat_time, args.fold)))
args.logger = logger
# creat dataloader
train_loader, test_loader = create_loader(args)
# print args
for param in sorted(vars(args).keys()):
logger.info('--{0} {1}'.format(param, vars(args)[param]))
# creat model
models_package = models_imagenet if args.data == 'imagenet' else models_cifar
if args.pretrained:
model = models_package.__dict__[args.model_file].__dict__[args.model_name](num_classes=args.num_classes,
pretrained=args.pretrained)
else:
model = models_package.__dict__[args.model_file].__dict__[args.model_name](num_classes=args.num_classes)
if args.ddp:
model.cuda(args.local_rank)
model = DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
else:
model = nn.DataParallel(model).cuda()
# creat criterion
criterion = LabelSmoothingLoss(args.num_classes).cuda(args.local_rank)
# creat optimizer
if args.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
elif args.optimizer == 'adamw':
optimizer = optim.AdamW(model.parameters(),
lr=args.lr,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=args.weight_decay,
amsgrad=False)
else:
raise NotImplementedError
best_acc1 = 0.0
best_acc5 = 0.0
start_epoch = 1
# optionally resume from a checkpoint
if args.resume:
if args.resume in ['best', 'latest']:
args.resume = os.path.join(args.path_log, 'fold%s_%s.pth' % (args.fold, args.resume))
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.local_rank) if args.ddp else None
state_dict = torch.load(args.resume, map_location=loc)
if 'state_dict' in state_dict:
state_dict_ = state_dict['state_dict']
elif 'model' in state_dict:
state_dict_ = state_dict['model']
else:
state_dict_ = state_dict
model.load_state_dict(state_dict_, strict=args.strict)
start_epoch = state_dict['epoch'] + 1
optimizer.load_state_dict(state_dict['optimizer'])
logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, state_dict['epoch']))
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
# optionally evaluate
if args.evaluate:
epoch = start_epoch - 1
acc1, acc5 = test(epoch, model, test_loader, logger, args)
logger.info('Epoch(val) [{}]\tTest Acc@1: {:.4f}\tTest Acc@5: {:.4f}\tCopypaste: {:.4f}, {:.4f}'.format(
epoch, acc1, acc5, acc1, acc5))
logger.info('Exp path: %s' % args.path_log)
return
# start training
for epoch in range(start_epoch, args.epoch + 1):
if args.ddp:
train_loader.sampler.set_epoch(epoch)
train(epoch, model, optimizer, criterion, train_loader, logger, args)
save_checkpoint(epoch, model, optimizer, args, save_name='latest')
acc1, acc5 = test(epoch, model, test_loader, logger, args)
if acc1 >= best_acc1:
best_acc1 = acc1
best_acc5 = acc5
save_checkpoint(epoch, model, optimizer, args, save_name='best')
logger.info('Epoch(val) [{}]\tTest Acc@1: {:.4f}\tTest Acc@5: {:.4f}\t'
'Best Acc@1: {:.4f}\tBest Acc@5: {:.4f}\tCopypaste: {:.4f}, {:.4f}'.format(
epoch, acc1, acc5, best_acc1, best_acc5, best_acc1, best_acc5))
logger.info('Exp path: %s' % args.path_log)
def train(epoch, model, optimizer, criterion, train_loader, logger, args):
model.train()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
old_inputs = None
lr = adjust_learning_rate(optimizer, epoch, args)
for idx, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
inputs, targets = inputs.cuda(), targets.cuda()
targets_onehot = smooth_one_hot(targets, args.num_classes, args.smoothing)
with autocast():
if args.aug == 'none':
out = model(inputs)
loss = criterion(out, targets_onehot)
elif args.aug == 'recursive_mix':
if old_inputs is not None:
inputs, targets_onehot, boxes, lam = recursive_mix(inputs, old_inputs, targets_onehot, old_targets,
args.aug_alpha, args.interpolate_mode)
else:
lam = 1.0
if lam < 1.0:
out, out_roi = model(inputs, boxes, share_fc=args.share_fc)
else:
out = model(inputs, None, share_fc=args.share_fc)
loss = criterion(out, targets_onehot)
if lam < 1.0:
loss_roi = criterion(out_roi, (old_out).softmax(dim=-1)[:inputs.size(0)])
loss += loss_roi * args.aug_omega * (1.0 - lam)
old_inputs = inputs.clone().detach()
old_targets = targets_onehot.clone().detach()
old_out = out.clone().detach()
else:
raise NotImplementedError
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
batch_size = targets.size(0)
losses.update(reduce_value(loss).item(), batch_size)
acc1, acc5 = accuracy(out, targets, topk=(1, 5))
top1.update(reduce_value(acc1), batch_size)
top5.update(reduce_value(acc5), batch_size)
if idx % args.print_freq == 0:
logger.info("Epoch [{0}/{1}][{2}/{3}]\t"
"lr {4:.6f}\t"
"Loss {loss.val:.4f} ({loss.avg:.4f})\t"
"Acc@1 {top1.val:.4f} ({top1.avg:.4f})\t"
"Acc@5 {top5.val:.4f} ({top5.avg:.4f})".format(
epoch,
args.epoch,
idx,
len(train_loader),
lr,
loss=losses,
top1=top1,
top5=top5,
))
sys.stdout.flush()
return top1.avg, top5.avg
@torch.no_grad()
def test(epoch, model, test_loader, logger, args):
model.eval()
top1 = AverageMeter()
top5 = AverageMeter()
for idx, (inputs, targets) in enumerate(test_loader):
batch_size = targets.size(0)
inputs, targets = inputs.cuda(), targets.cuda()
out = model(inputs)
acc1, acc5 = accuracy(out, targets, topk=(1, 5))
top1.update(reduce_value(acc1), batch_size)
top5.update(reduce_value(acc5), batch_size)
if idx % args.print_freq == 0:
logger.info("Epoch(val) [{0}/{1}][{2}/{3}]\t"
"Acc@1 {top1.val:.4f} ({top1.avg:.4f})\t"
"Acc@5 {top5.val:.4f} ({top5.avg:.4f})".format(
epoch,
args.epoch,
idx,
len(test_loader),
top1=top1,
top5=top5,
))
return top1.avg, top5.avg
if __name__ == '__main__':
main()