|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "### Author : Sanjoy Biswas\n", |
| 8 | + "### Topic : Count Vectorizer\n", |
| 9 | + |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "Scikit-learn’s CountVectorizer is used to transform a corpora of text to a vector of term / token counts. It also provides the capability to preprocess your text data prior to generating the vector representation making it a highly flexible feature representation module for text." |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "markdown", |
| 21 | + "metadata": {}, |
| 22 | + "source": [ |
| 23 | + "#### Methods\n", |
| 24 | + "build_analyzer():Return a callable that handles preprocessing, tokenization and n-grams generation.\n", |
| 25 | + "\n", |
| 26 | + "build_preprocessor():Return a function to preprocess the text before tokenization.\n", |
| 27 | + "\n", |
| 28 | + "build_tokenizer():Return a function that splits a string into a sequence of tokens.\n", |
| 29 | + "\n", |
| 30 | + "decode(doc):Decode the input into a string of unicode symbols.\n", |
| 31 | + "\n", |
| 32 | + "fit(raw_documents[, y]):Learn a vocabulary dictionary of all tokens in the raw documents.\n", |
| 33 | + "\n", |
| 34 | + "fit_transform(raw_documents[, y]):Learn the vocabulary dictionary and return document-term matrix.\n", |
| 35 | + "\n", |
| 36 | + "get_feature_names():Array mapping from feature integer indices to feature name.\n", |
| 37 | + "\n", |
| 38 | + "get_params([deep]):Get parameters for this estimator.\n", |
| 39 | + "\n", |
| 40 | + "get_stop_words():Build or fetch the effective stop words list.\n", |
| 41 | + "\n", |
| 42 | + "inverse_transform(X):Return terms per document with nonzero entries in X.\n", |
| 43 | + "\n", |
| 44 | + "set_params(**params):Set the parameters of this estimator.\n", |
| 45 | + "\n", |
| 46 | + "transform(raw_documents):Transform documents to document-term matrix." |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "markdown", |
| 51 | + "metadata": {}, |
| 52 | + "source": [ |
| 53 | + "#### Word Counts with CountVectorizer\n", |
| 54 | + "The CountVectorizer provides a simple way to both tokenize a collection of text documents and build a vocabulary of known words, but also to encode new documents using that vocabulary.\n", |
| 55 | + "\n", |
| 56 | + "You can use it as follows:\n", |
| 57 | + "\n", |
| 58 | + "1. Create an instance of the CountVectorizer class.\n", |
| 59 | + "2. Call the fit() function in order to learn a vocabulary from one or more documents.\n", |
| 60 | + "3. Call the transform() function on one or more documents as needed to encode each as a vector.\n", |
| 61 | + "\n", |
| 62 | + "An encoded vector is returned with a length of the entire vocabulary and an integer count for the number of times each word appeared in the document.\n", |
| 63 | + "\n", |
| 64 | + "Because these vectors will contain a lot of zeros, we call them sparse. Python provides an efficient way of handling sparse vectors in the scipy.sparse package.\n", |
| 65 | + "\n", |
| 66 | + "The vectors returned from a call to transform() will be sparse vectors, and you can transform them back to numpy arrays to look and better understand what is going on by calling the toarray() function." |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": 2, |
| 72 | + "metadata": {}, |
| 73 | + "outputs": [], |
| 74 | + "source": [ |
| 75 | + "from sklearn.feature_extraction.text import CountVectorizer" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": 10, |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [], |
| 83 | + "source": [ |
| 84 | + "dataset = ['Hey welcome to datascience',\n", |
| 85 | + " 'This is Data Science Course',\n", |
| 86 | + " 'Working as data scientist']" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "code", |
| 91 | + "execution_count": 11, |
| 92 | + "metadata": {}, |
| 93 | + "outputs": [ |
| 94 | + { |
| 95 | + "data": { |
| 96 | + "text/plain": [ |
| 97 | + "['Hey welcome to datascience',\n", |
| 98 | + " 'This is Data Science Course',\n", |
| 99 | + " 'Working as data scientist']" |
| 100 | + ] |
| 101 | + }, |
| 102 | + "execution_count": 11, |
| 103 | + "metadata": {}, |
| 104 | + "output_type": "execute_result" |
| 105 | + } |
| 106 | + ], |
| 107 | + "source": [ |
| 108 | + "dataset" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": 12, |
| 114 | + "metadata": {}, |
| 115 | + "outputs": [], |
| 116 | + "source": [ |
| 117 | + "cv = CountVectorizer()\n", |
| 118 | + "x = cv.fit_transform(dataset)" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "code", |
| 123 | + "execution_count": 13, |
| 124 | + "metadata": {}, |
| 125 | + "outputs": [ |
| 126 | + { |
| 127 | + "data": { |
| 128 | + "text/plain": [ |
| 129 | + "['as',\n", |
| 130 | + " 'course',\n", |
| 131 | + " 'data',\n", |
| 132 | + " 'datascience',\n", |
| 133 | + " 'hey',\n", |
| 134 | + " 'is',\n", |
| 135 | + " 'science',\n", |
| 136 | + " 'scientist',\n", |
| 137 | + " 'this',\n", |
| 138 | + " 'to',\n", |
| 139 | + " 'welcome',\n", |
| 140 | + " 'working']" |
| 141 | + ] |
| 142 | + }, |
| 143 | + "execution_count": 13, |
| 144 | + "metadata": {}, |
| 145 | + "output_type": "execute_result" |
| 146 | + } |
| 147 | + ], |
| 148 | + "source": [ |
| 149 | + "cv.get_feature_names()" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": 14, |
| 155 | + "metadata": {}, |
| 156 | + "outputs": [ |
| 157 | + { |
| 158 | + "data": { |
| 159 | + "text/plain": [ |
| 160 | + "array([[0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0],\n", |
| 161 | + " [0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0],\n", |
| 162 | + " [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1]], dtype=int64)" |
| 163 | + ] |
| 164 | + }, |
| 165 | + "execution_count": 14, |
| 166 | + "metadata": {}, |
| 167 | + "output_type": "execute_result" |
| 168 | + } |
| 169 | + ], |
| 170 | + "source": [ |
| 171 | + "x.toarray()" |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "code", |
| 176 | + "execution_count": null, |
| 177 | + "metadata": {}, |
| 178 | + "outputs": [], |
| 179 | + "source": [] |
| 180 | + } |
| 181 | + ], |
| 182 | + "metadata": { |
| 183 | + "kernelspec": { |
| 184 | + "display_name": "Python 3", |
| 185 | + "language": "python", |
| 186 | + "name": "python3" |
| 187 | + }, |
| 188 | + "language_info": { |
| 189 | + "codemirror_mode": { |
| 190 | + "name": "ipython", |
| 191 | + "version": 3 |
| 192 | + }, |
| 193 | + "file_extension": ".py", |
| 194 | + "mimetype": "text/x-python", |
| 195 | + "name": "python", |
| 196 | + "nbconvert_exporter": "python", |
| 197 | + "pygments_lexer": "ipython3", |
| 198 | + "version": "3.7.4" |
| 199 | + } |
| 200 | + }, |
| 201 | + "nbformat": 4, |
| 202 | + "nbformat_minor": 2 |
| 203 | +} |
0 commit comments