-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathGmmGen10Texture.cpp
941 lines (813 loc) · 36.6 KB
/
GmmGen10Texture.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/*==============================================================================
Copyright(c) 2017 Intel Corporation
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files(the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and / or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
============================================================================*/
#include "Internal/Common/GmmLibInc.h"
#include "Internal/Common/Texture/GmmGen10TextureCalc.h"
/////////////////////////////////////////////////////////////////////////////////////
/// Returns the mip offset of given LOD in Mip Tail
///
/// @param[in] pTexInfo: ptr to ::GMM_TEXTURE_INFO,
/// MipLevel: given LOD #
///
/// @return offset value of LOD in bytes
/////////////////////////////////////////////////////////////////////////////////////
uint32_t GmmLib::GmmGen10TextureCalc::GetMipTailByteOffset(GMM_TEXTURE_INFO *pTexInfo,
uint32_t MipLevel)
{
uint32_t ByteOffset = 0, Slot = 0xff;
GMM_DPF_ENTER;
// 3D textures follow the Gen9 mip tail format
if(!pGmmLibContext->GetSkuTable().FtrStandardMipTailFormat || pTexInfo->Type == RESOURCE_3D)
{
return GmmGen9TextureCalc::GetMipTailByteOffset(pTexInfo, MipLevel);
}
if(pTexInfo->Type == RESOURCE_1D)
{
Slot = MipLevel - pTexInfo->Alignment.MipTailStartLod +
(pTexInfo->Flags.Info.TiledYf ? 4 : 0);
}
else if(pTexInfo->Type == RESOURCE_2D || pTexInfo->Type == RESOURCE_CUBE)
{
// clang-format off
Slot = MipLevel - pTexInfo->Alignment.MipTailStartLod +
// TileYs
((pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 16) ? 4 :
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 8) ? 3 :
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 4) ? 2 :
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 2) ? 1 :
(pTexInfo->Flags.Info.TiledYs ) ? 0 :
// TileYf
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 16) ? 11:
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 8) ? 10:
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 4) ? 8:
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 2) ? 5:
(pTexInfo->Flags.Info.TiledYf ) ? 4: 0);
// clang-format on
}
switch(Slot)
{
case 0:
ByteOffset = GMM_KBYTE(32);
break;
case 1:
ByteOffset = GMM_KBYTE(16);
break;
case 2:
ByteOffset = GMM_KBYTE(8);
break;
case 3:
ByteOffset = GMM_KBYTE(4);
break;
case 4:
ByteOffset = GMM_KBYTE(2);
break;
case 5:
ByteOffset = GMM_BYTES(1536);
break;
case 6:
ByteOffset = GMM_BYTES(1280);
break;
case 7:
ByteOffset = GMM_BYTES(1024);
break;
case 8:
ByteOffset = GMM_BYTES(768);
break;
case 9:
ByteOffset = GMM_BYTES(512);
break;
case 10:
ByteOffset = GMM_BYTES(256);
break;
case 11:
ByteOffset = GMM_BYTES(192);
break;
case 12:
ByteOffset = GMM_BYTES(128);
break;
case 13:
ByteOffset = GMM_BYTES(64);
break;
case 14:
ByteOffset = GMM_BYTES(0);
break;
default:
__GMM_ASSERT(0);
}
GMM_DPF_EXIT;
return (ByteOffset);
}
GMM_MIPTAIL_SLOT_OFFSET Gen10MipTailSlotOffset1DSurface[15][5] = GEN10_MIPTAIL_SLOT_OFFSET_1D_SURFACE;
GMM_MIPTAIL_SLOT_OFFSET Gen10MipTailSlotOffset2DSurface[15][5] = GEN10_MIPTAIL_SLOT_OFFSET_2D_SURFACE;
GMM_MIPTAIL_SLOT_OFFSET Gen10MipTailSlotOffset3DSurface[15][5] = GEN10_MIPTAIL_SLOT_OFFSET_3D_SURFACE;
/////////////////////////////////////////////////////////////////////////////////////
/// Returns the mip-map offset in geometric OffsetX, Y, Z for a given LOD in Mip Tail.
///
/// @param[in] pTexInfo: ptr to ::GMM_TEXTURE_INFO,
/// MipLevel: mip-map level
/// OffsetX: ptr to Offset in X direction (in bytes)
/// OffsetY: ptr to Offset in Y direction (in pixels)
/// OffsetZ: ptr to Offset in Z direction (in pixels)
///
/////////////////////////////////////////////////////////////////////////////////////
void GmmLib::GmmGen10TextureCalc::GetMipTailGeometryOffset(GMM_TEXTURE_INFO *pTexInfo,
uint32_t MipLevel,
uint32_t * OffsetX,
uint32_t * OffsetY,
uint32_t * OffsetZ)
{
uint32_t ArrayIndex = 0;
uint32_t Slot = 0;
GMM_DPF_ENTER;
// 3D textures follow the Gen9 mip tail format
if(!pGmmLibContext->GetSkuTable().FtrStandardMipTailFormat ||
pTexInfo->Type == RESOURCE_3D)
{
return GmmGen9TextureCalc::GetMipTailGeometryOffset(pTexInfo, MipLevel, OffsetX, OffsetY, OffsetZ);
}
switch(pTexInfo->BitsPerPixel)
{
case 128:
ArrayIndex = 0;
break;
case 64:
ArrayIndex = 1;
break;
case 32:
ArrayIndex = 2;
break;
case 16:
ArrayIndex = 3;
break;
case 8:
ArrayIndex = 4;
break;
default:
__GMM_ASSERT(0);
break;
}
if(pTexInfo->Type == RESOURCE_1D)
{
Slot = MipLevel - pTexInfo->Alignment.MipTailStartLod +
(pTexInfo->Flags.Info.TiledYf ? 4 : 0);
*OffsetX = Gen10MipTailSlotOffset1DSurface[Slot][ArrayIndex].X * pTexInfo->BitsPerPixel / 8;
*OffsetY = Gen10MipTailSlotOffset1DSurface[Slot][ArrayIndex].Y;
*OffsetZ = Gen10MipTailSlotOffset1DSurface[Slot][ArrayIndex].Z;
}
else if(pTexInfo->Type == RESOURCE_2D || pTexInfo->Type == RESOURCE_CUBE)
{
// clang-format off
Slot = MipLevel - pTexInfo->Alignment.MipTailStartLod +
// TileYs
((pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 16) ? 4 :
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 8) ? 3 :
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 4) ? 2 :
(pTexInfo->Flags.Info.TiledYs && pTexInfo->MSAA.NumSamples == 2) ? 1 :
(pTexInfo->Flags.Info.TiledYs) ? 0 :
// TileYf
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 16) ? 11 :
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 8) ? 10 :
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 4) ? 8 :
(pTexInfo->Flags.Info.TiledYf && pTexInfo->MSAA.NumSamples == 2) ? 5 :
(pTexInfo->Flags.Info.TiledYf) ? 4 : 0);
// clang-format on
*OffsetX = Gen10MipTailSlotOffset2DSurface[Slot][ArrayIndex].X * pTexInfo->BitsPerPixel / 8;
*OffsetY = Gen10MipTailSlotOffset2DSurface[Slot][ArrayIndex].Y;
*OffsetZ = Gen10MipTailSlotOffset2DSurface[Slot][ArrayIndex].Z;
}
GMM_DPF_EXIT;
return;
}
/////////////////////////////////////////////////////////////////////////////////////
/// Returns the aligned block height of the 3D surface on Gen9
///
/// @param[in] pTexInfo: ptr to ::GMM_TEXTURE_INFO,
/// BlockHeight:
/// ExpandedArraySize: adjusted array size for MSAA, cube faces, etc.
///
/// @return BlockHeight
/////////////////////////////////////////////////////////////////////////////////////
uint32_t GmmLib::GmmGen10TextureCalc::GetAligned3DBlockHeight(GMM_TEXTURE_INFO *pTexInfo,
uint32_t BlockHeight,
uint32_t ExpandedArraySize)
{
uint32_t DAlign, CompressHeight, CompressWidth, CompressDepth;
GMM_DPF_ENTER;
__GMM_ASSERTPTR(pTexInfo, 0);
const GMM_PLATFORM_INFO *pPlatform = GMM_OVERRIDE_PLATFORM_INFO(pTexInfo, pGmmLibContext);
DAlign = pTexInfo->Alignment.DAlign;
GetCompressionBlockDimensions(pTexInfo->Format, &CompressWidth, &CompressHeight, &CompressDepth);
if(pTexInfo->Type == RESOURCE_3D)
{
ExpandedArraySize = GFX_ALIGN_NP2(ExpandedArraySize, DAlign) / CompressDepth;
if(!pTexInfo->Flags.Info.Linear)
{
BlockHeight = GFX_ALIGN(BlockHeight, pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileHeight);
}
}
GMM_DPF_EXIT;
return BlockHeight;
}
/////////////////////////////////////////////////////////////////////////////////////
/// Allocates the 2D mip layout for surface state programming.
///
/// @param[in] pTexInfo: ptr to ::GMM_TEXTURE_INFO,
/// @param[in] pRestrictions: ptr to surface alignment and size restrictions
///
/// @return ::GMM_STATUS
/////////////////////////////////////////////////////////////////////////////////////
GMM_STATUS GMM_STDCALL GmmLib::GmmGen10TextureCalc::FillTex2D(GMM_TEXTURE_INFO * pTexInfo,
__GMM_BUFFER_TYPE *pRestrictions)
{
uint32_t Width, Height, BitsPerPixel;
uint32_t HAlign, VAlign, DAlign, CompressHeight, CompressWidth, CompressDepth;
uint32_t AlignedWidth, BlockHeight, ExpandedArraySize, Pitch;
uint8_t Compress = 0;
GMM_STATUS Status;
GMM_DPF_ENTER;
__GMM_ASSERTPTR(pTexInfo, GMM_ERROR);
__GMM_ASSERTPTR(pRestrictions, GMM_ERROR);
const GMM_PLATFORM_INFO *pPlatform = GMM_OVERRIDE_PLATFORM_INFO(pTexInfo, pGmmLibContext);
BitsPerPixel = pTexInfo->BitsPerPixel;
if(pTexInfo->Flags.Gpu.CCS && pTexInfo->Flags.Gpu.__NonMsaaTileYCcs)
{
// Aux Surfaces are 8bpp.
BitsPerPixel = 8;
}
Height = pTexInfo->BaseHeight;
Width = GFX_ULONG_CAST(pTexInfo->BaseWidth);
pTexInfo->MSAA.NumSamples = GFX_MAX(pTexInfo->MSAA.NumSamples, 1);
if(pTexInfo->Flags.Info.TiledYf || pTexInfo->Flags.Info.TiledYs)
{
FindMipTailStartLod(pTexInfo);
}
ExpandedArraySize =
GFX_MAX(pTexInfo->ArraySize, 1) *
((pTexInfo->Type == RESOURCE_CUBE) ? 6 : 1) * // Cubemaps simply 6-element, 2D arrays.
((pTexInfo->Type == RESOURCE_3D) ? pTexInfo->Depth : 1) * // 3D's simply 2D arrays.
((pTexInfo->Flags.Gpu.Depth || pTexInfo->Flags.Gpu.SeparateStencil ||
(pTexInfo->Flags.Info.TiledYs || pTexInfo->Flags.Info.TiledYf)) ? // MSAA Ys samples are NOT stored as array planes.
1 :
pTexInfo->MSAA.NumSamples); // MSAA (non-Depth/Stencil) RT samples stored as array planes.
if(pTexInfo->Flags.Info.TiledYs || pTexInfo->Flags.Info.TiledYf)
{
ExpandedArraySize = GFX_CEIL_DIV(ExpandedArraySize, pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileDepth);
}
//
// Check for color separation
//
if(pTexInfo->Flags.Gpu.ColorSeparation || pTexInfo->Flags.Gpu.ColorSeparationRGBX)
{
bool csRestrictionsMet = (((ExpandedArraySize <= 2) &&
(ExpandedArraySize == pTexInfo->ArraySize) &&
((pTexInfo->Format == GMM_FORMAT_R8G8B8A8_UNORM) ||
(pTexInfo->Format == GMM_FORMAT_R8G8B8A8_UNORM_SRGB) ||
(pTexInfo->Format == GMM_FORMAT_B8G8R8A8_UNORM) ||
(pTexInfo->Format == GMM_FORMAT_B8G8R8A8_UNORM_SRGB) ||
(pTexInfo->Format == GMM_FORMAT_B8G8R8X8_UNORM) ||
(pTexInfo->Format == GMM_FORMAT_B8G8R8X8_UNORM_SRGB)) &&
((pTexInfo->Flags.Gpu.ColorSeparation && (Width % 16) == 0) ||
(pTexInfo->Flags.Gpu.ColorSeparationRGBX && (Width % 12) == 0))));
if(csRestrictionsMet)
{
ExpandedArraySize = GMM_COLOR_SEPARATION_ARRAY_SIZE;
}
else
{
pTexInfo->Flags.Gpu.ColorSeparation = false;
pTexInfo->Flags.Gpu.ColorSeparationRGBX = false;
}
}
HAlign = pTexInfo->Alignment.HAlign;
VAlign = pTexInfo->Alignment.VAlign;
DAlign = pTexInfo->Alignment.DAlign;
GetCompressionBlockDimensions(pTexInfo->Format, &CompressWidth, &CompressHeight, &CompressDepth);
Compress = GmmIsCompressed(pGmmLibContext, pTexInfo->Format);
/////////////////////////////////
// Calculate Block Surface Height
/////////////////////////////////
if(ExpandedArraySize > 1)
{
uint32_t Alignment = VAlign;
if((pTexInfo->Type == RESOURCE_3D && !pTexInfo->Flags.Info.Linear) ||
(pTexInfo->Flags.Gpu.S3dDx && pGmmLibContext->GetSkuTable().FtrDisplayEngineS3d) ||
(pTexInfo->Flags.Wa.MediaPipeUsage))
{
Alignment = pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileHeight;
//Gmm uses TileY for Stencil allocations, having half TileW height (TileY width compensates)
if(pTexInfo->Flags.Gpu.SeparateStencil && pTexInfo->Flags.Info.TiledW)
{
Alignment *= 2;
}
}
// Calculate the overall Block height...Mip0Height + Max(Mip1Height, Sum of Mip2Height..MipnHeight)
BlockHeight = Get2DMipMapTotalHeight(pTexInfo);
BlockHeight = GFX_ALIGN_NP2(BlockHeight, Alignment);
// GMM internally uses QPitch as the logical distance between slices, but translates
// as appropriate to service client queries in GmmResGetQPitch.
pTexInfo->Alignment.QPitch = BlockHeight;
if(Compress)
{
BlockHeight = GFX_CEIL_DIV(BlockHeight, CompressHeight);
BlockHeight = GetAligned3DBlockHeight(pTexInfo, BlockHeight, ExpandedArraySize);
}
else if(pTexInfo->Flags.Gpu.SeparateStencil && pTexInfo->Flags.Info.TiledW)
{
BlockHeight /= 2;
}
else if(pTexInfo->Flags.Gpu.CCS && pTexInfo->Flags.Gpu.__NonMsaaTileYCcs)
{
BlockHeight /= 16;
}
BlockHeight *= ExpandedArraySize;
}
else
{
pTexInfo->Alignment.QPitch = 0;
BlockHeight = Get2DMipMapHeight(pTexInfo);
}
///////////////////////////////////
// Calculate Pitch
///////////////////////////////////
AlignedWidth = __GMM_EXPAND_WIDTH(this, Width, HAlign, pTexInfo);
// For Non - planar surfaces, the alignment is done on the entire height of the allocation
if(pGmmLibContext->GetWaTable().WaAlignYUVResourceToLCU &&
GmmIsYUVFormatLCUAligned(pTexInfo->Format))
{
AlignedWidth = GFX_ALIGN(AlignedWidth, GMM_SCANLINES(GMM_MAX_LCU_SIZE));
}
// Calculate special pitch case of small dimensions where LOD1 + LOD2 widths
// are greater than LOD0. e.g. dimensions 4x4 and MinPitch == 1
if((pTexInfo->Flags.Info.TiledYf || pTexInfo->Flags.Info.TiledYs) &&
(pTexInfo->Alignment.MipTailStartLod < 2))
{
// Do nothing -- all mips are in LOD0/LOD1, which is already width aligned.
}
else if(pTexInfo->MaxLod >= 2)
{
uint32_t AlignedWidthLod1, AlignedWidthLod2;
AlignedWidthLod1 = __GMM_EXPAND_WIDTH(this, Width >> 1, HAlign, pTexInfo);
AlignedWidthLod2 = __GMM_EXPAND_WIDTH(this, Width >> 2, HAlign, pTexInfo);
AlignedWidth = GFX_MAX(AlignedWidth, AlignedWidthLod1 + AlignedWidthLod2);
}
if(Compress)
{
AlignedWidth = GFX_CEIL_DIV(AlignedWidth, CompressWidth);
}
else if(pTexInfo->Flags.Gpu.SeparateStencil && pTexInfo->Flags.Info.TiledW)
{
AlignedWidth *= 2;
}
else if(pTexInfo->Flags.Gpu.CCS && pTexInfo->Flags.Gpu.__NonMsaaTileYCcs)
{
switch(pTexInfo->BitsPerPixel)
{
case 32:
AlignedWidth /= 8;
break;
case 64:
AlignedWidth /= 4;
break;
case 128:
AlignedWidth /= 2;
break;
default:
__GMM_ASSERT(0);
}
}
else if(pTexInfo->Flags.Gpu.ColorSeparation)
{
AlignedWidth *= pTexInfo->ArraySize;
__GMM_ASSERT(0 == (AlignedWidth % GMM_COLOR_SEPARATION_WIDTH_DIVISION));
AlignedWidth /= GMM_COLOR_SEPARATION_WIDTH_DIVISION;
}
else if(pTexInfo->Flags.Gpu.ColorSeparationRGBX)
{
AlignedWidth *= pTexInfo->ArraySize;
__GMM_ASSERT(0 == (AlignedWidth % GMM_COLOR_SEPARATION_RGBX_WIDTH_DIVISION));
AlignedWidth /= GMM_COLOR_SEPARATION_RGBX_WIDTH_DIVISION;
}
// Default pitch
Pitch = AlignedWidth * BitsPerPixel >> 3;
// Make sure the pitch satisfy linear min pitch requirment
Pitch = GFX_MAX(Pitch, pRestrictions->MinPitch);
// Make sure pitch satisfy alignment restriction
Pitch = GFX_ALIGN(Pitch, pRestrictions->PitchAlignment);
////////////////////
// Adjust for Tiling
////////////////////
if(GMM_IS_TILED(pPlatform->TileInfo[pTexInfo->TileMode]))
{
Pitch = GFX_ALIGN(Pitch, pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileWidth);
BlockHeight = GFX_ALIGN(BlockHeight, pPlatform->TileInfo[pTexInfo->TileMode].LogicalTileHeight);
}
GMM_ASSERTDPF(pTexInfo->Flags.Info.LayoutBelow || !pTexInfo->Flags.Info.LayoutRight, "MIPLAYOUT_RIGHT not supported after Gen6!");
pTexInfo->Flags.Info.LayoutBelow = 1;
pTexInfo->Flags.Info.LayoutRight = 0;
// If a texture is YUV packed, 96, or 48 bpp then one row plus 16 bytes of
// padding needs to be added. Since this will create a none pitch aligned
// surface the padding is aligned to the next row
if(GmmIsYUVPacked(pTexInfo->Format) ||
(pTexInfo->BitsPerPixel == GMM_BITS(96)) ||
(pTexInfo->BitsPerPixel == GMM_BITS(48)))
{
BlockHeight += GMM_SCANLINES(1) + GFX_CEIL_DIV(GMM_BYTES(16), Pitch);
}
// For Non-planar surfaces, the alignment is done on the entire height of the allocation
if(pGmmLibContext->GetWaTable().WaAlignYUVResourceToLCU &&
GmmIsYUVFormatLCUAligned(pTexInfo->Format) &&
!GmmIsPlanar(pTexInfo->Format))
{
BlockHeight = GFX_ALIGN(BlockHeight, GMM_SCANLINES(GMM_MAX_LCU_SIZE));
}
// Align height to even row to cover for HW over-fetch
BlockHeight = GFX_ALIGN(BlockHeight, __GMM_EVEN_ROW);
if((Status = // <-- Note assignment.
FillTexPitchAndSize(
pTexInfo, Pitch, BlockHeight, pRestrictions)) == GMM_SUCCESS)
{
Fill2DTexOffsetAddress(pTexInfo);
}
GMM_DPF_EXIT;
return (Status);
}
/////////////////////////////////////////////////////////////////////////////////////
/// This function will Setup a planar surface allocation.
///
/// @param[in] pTexInfo: Reference to ::GMM_TEXTURE_INFO
/// @param[in] pRestrictions: Reference to surface alignment and size restrictions.
///
/// @return ::GMM_STATUS
/////////////////////////////////////////////////////////////////////////////////////
GMM_STATUS GMM_STDCALL GmmLib::GmmGen10TextureCalc::FillTexPlanar(GMM_TEXTURE_INFO * pTexInfo,
__GMM_BUFFER_TYPE *pRestrictions)
{
uint32_t WidthBytesPhysical, Height, YHeight, VHeight;
uint32_t AdjustedVHeight = 0;
GMM_STATUS Status;
bool UVPacked = false;
GMM_DPF_ENTER;
__GMM_ASSERTPTR(pTexInfo, GMM_ERROR);
__GMM_ASSERTPTR(pRestrictions, GMM_ERROR);
__GMM_ASSERT(!pTexInfo->Flags.Info.TiledW);
pTexInfo->TileMode = TILE_NONE;
const GMM_PLATFORM_INFO *pPlatform = GMM_OVERRIDE_PLATFORM_INFO(pTexInfo, pGmmLibContext);
WidthBytesPhysical = GFX_ULONG_CAST(pTexInfo->BaseWidth) * pTexInfo->BitsPerPixel >> 3;
Height = VHeight = 0;
YHeight = pTexInfo->BaseHeight;
switch(pTexInfo->Format)
{
case GMM_FORMAT_IMC1: // IMC1 = IMC3 with Swapped U/V
case GMM_FORMAT_IMC3:
case GMM_FORMAT_MFX_JPEG_YUV420: // Same as IMC3.
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// UUUU
// UUUU
// VVVV
// VVVV
case GMM_FORMAT_MFX_JPEG_YUV422V: // Similar to IMC3 but U/V are full width.
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// UUUUUUUU
// UUUUUUUU
// VVVVVVVV
// VVVVVVVV
{
VHeight = GFX_ALIGN(GFX_CEIL_DIV(YHeight, 2), GMM_IMCx_PLANE_ROW_ALIGNMENT);
YHeight = GFX_ALIGN(YHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
Height = YHeight + 2 * VHeight; // One VHeight for V and one for U.
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 3;
break;
}
case GMM_FORMAT_MFX_JPEG_YUV411R_TYPE: //Similar to IMC3 but U/V are quarther height and full width.
//YYYYYYYY
//YYYYYYYY
//YYYYYYYY
//YYYYYYYY
//UUUUUUUU
//VVVVVVVV
{
VHeight = GFX_ALIGN(GFX_CEIL_DIV(YHeight, 4), GMM_IMCx_PLANE_ROW_ALIGNMENT);
YHeight = GFX_ALIGN(YHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
Height = YHeight + 2 * VHeight;
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 3;
break;
}
case GMM_FORMAT_MFX_JPEG_YUV411: // Similar to IMC3 but U/V are quarter width and full height.
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// UU
// UU
// UU
// UU
// VV
// VV
// VV
// VV
case GMM_FORMAT_MFX_JPEG_YUV422H: // Similar to IMC3 but U/V are full height.
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// UUUU
// UUUU
// UUUU
// UUUU
// VVVV
// VVVV
// VVVV
// VVVV
case GMM_FORMAT_BGRP:
case GMM_FORMAT_RGBP:
case GMM_FORMAT_MFX_JPEG_YUV444: // Similar to IMC3 but U/V are full size.
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// UUUUUUUU
// UUUUUUUU
// UUUUUUUU
// UUUUUUUU
// VVVVVVVV
// VVVVVVVV
// VVVVVVVV
// VVVVVVVV
{
YHeight = GFX_ALIGN(YHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
VHeight = YHeight;
Height = YHeight + 2 * VHeight;
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 3;
break;
}
case GMM_FORMAT_IMC2: // IMC2 = IMC4 with Swapped U/V
case GMM_FORMAT_IMC4:
{
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// UUUUVVVV
// UUUUVVVV
YHeight = GFX_ALIGN(YHeight, GMM_IMCx_PLANE_ROW_ALIGNMENT);
VHeight = GFX_CEIL_DIV(YHeight, 2);
WidthBytesPhysical = GFX_ALIGN(WidthBytesPhysical, 2); // If odd YWidth, pitch bumps-up to fit rounded-up U/V planes.
Height = YHeight + VHeight;
// With SURFACE_STATE.XOffset support, the U-V interface has
// much lighter restrictions--which will be naturally met by
// surface pitch restrictions (i.e. dividing an IMC2/4 pitch
// by 2--to get the U/V interface--will always produce a safe
// XOffset value).
// Not technically UV packed but sizing works out the same
// if the resource is std swizzled
UVPacked = true;
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 2;
break;
}
case GMM_FORMAT_NV12:
case GMM_FORMAT_NV21:
case GMM_FORMAT_NV11:
case GMM_FORMAT_P010:
case GMM_FORMAT_P012:
case GMM_FORMAT_P016:
case GMM_FORMAT_P208:
case GMM_FORMAT_P216:
{
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// [UV-Packing]
if((pTexInfo->Format == GMM_FORMAT_NV12) ||
(pTexInfo->Format == GMM_FORMAT_NV21) ||
(pTexInfo->Format == GMM_FORMAT_P010) ||
(pTexInfo->Format == GMM_FORMAT_P012) ||
(pTexInfo->Format == GMM_FORMAT_P016))
{
VHeight = GFX_CEIL_DIV(YHeight, 2); // U/V plane half of Y
Height = YHeight + VHeight;
}
else
{
VHeight = YHeight; // U/V plane is same as Y
Height = YHeight + VHeight;
}
if((pTexInfo->Format == GMM_FORMAT_NV12) ||
(pTexInfo->Format == GMM_FORMAT_NV21) ||
(pTexInfo->Format == GMM_FORMAT_P010) ||
(pTexInfo->Format == GMM_FORMAT_P012) ||
(pTexInfo->Format == GMM_FORMAT_P016) ||
(pTexInfo->Format == GMM_FORMAT_P208) ||
(pTexInfo->Format == GMM_FORMAT_P216))
{
WidthBytesPhysical = GFX_ALIGN(WidthBytesPhysical, 2); // If odd YWidth, pitch bumps-up to fit rounded-up U/V planes.
}
else //if(pTexInfo->Format == GMM_FORMAT_NV11)
{
// Tiling not supported, since YPitch != UVPitch...
pTexInfo->Flags.Info.TiledY = 0;
pTexInfo->Flags.Info.TiledYf = 0;
pTexInfo->Flags.Info.TiledYs = 0;
pTexInfo->Flags.Info.TiledX = 0;
pTexInfo->Flags.Info.Linear = 1;
}
UVPacked = true;
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 2;
break;
}
case GMM_FORMAT_I420: // IYUV & I420: are identical to YV12 except,
case GMM_FORMAT_IYUV: // U & V pl.s are reversed.
case GMM_FORMAT_YV12:
case GMM_FORMAT_YVU9:
{
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// YYYYYYYY
// VVVVVV.. <-- V and U planes follow the Y plane, as linear
// ..UUUUUU arrays--without respect to pitch.
uint32_t YSize, UVSize, YVSizeRShift;
uint32_t YSizeForUVPurposes, YSizeForUVPurposesDimensionalAlignment;
YSize = WidthBytesPhysical * YHeight;
// YVU9 has one U/V pixel for each 4x4 Y block.
// The others have one U/V pixel for each 2x2 Y block.
// YVU9 has a Y:V size ratio of 16 (4x4 --> 1).
// The others have a ratio of 4 (2x2 --> 1).
YVSizeRShift = (pTexInfo->Format != GMM_FORMAT_YVU9) ? 2 : 4;
// If a Y plane isn't fully-aligned to its Y-->U/V block size, the
// extra/unaligned Y pixels still need corresponding U/V pixels--So
// for the purpose of computing the UVSize, we must consider a
// dimensionally "rounded-up" YSize. (E.g. a 13x5 YVU9 Y plane would
// require 4x2 U/V planes--the same UVSize as a fully-aligned 16x8 Y.)
YSizeForUVPurposesDimensionalAlignment = (pTexInfo->Format != GMM_FORMAT_YVU9) ? 2 : 4;
YSizeForUVPurposes =
GFX_ALIGN(WidthBytesPhysical, YSizeForUVPurposesDimensionalAlignment) *
GFX_ALIGN(YHeight, YSizeForUVPurposesDimensionalAlignment);
UVSize = 2 * // <-- U + V
(YSizeForUVPurposes >> YVSizeRShift);
Height = GFX_CEIL_DIV(YSize + UVSize, WidthBytesPhysical);
// Tiling not supported, since YPitch != UVPitch...
pTexInfo->Flags.Info.TiledY = 0;
pTexInfo->Flags.Info.TiledYf = 0;
pTexInfo->Flags.Info.TiledYs = 0;
pTexInfo->Flags.Info.TiledX = 0;
pTexInfo->Flags.Info.Linear = 1;
pTexInfo->OffsetInfo.Plane.NoOfPlanes = 1;
break;
}
default:
{
GMM_ASSERTDPF(0, "Unexpected format");
return GMM_ERROR;
}
}
// Align Height to even row to avoid hang if HW over-fetch
Height = GFX_ALIGN(Height, __GMM_EVEN_ROW);
SetTileMode(pTexInfo);
// MMC is not supported for linear formats.
if(pTexInfo->Flags.Gpu.MMC)
{
if(!(pTexInfo->Flags.Info.TiledY || pTexInfo->Flags.Info.TiledYf || pTexInfo->Flags.Info.TiledYs))
{
pTexInfo->Flags.Gpu.MMC = 0;
}
}
// Legacy Planar "Linear Video" Restrictions...
if(pTexInfo->Flags.Info.Linear && !pTexInfo->Flags.Wa.NoLegacyPlanarLinearVideoRestrictions)
{
pRestrictions->LockPitchAlignment = GFX_MAX(pRestrictions->LockPitchAlignment, GMM_BYTES(64));
pRestrictions->MinPitch = GFX_MAX(pRestrictions->MinPitch, GMM_BYTES(64));
pRestrictions->PitchAlignment = GFX_MAX(pRestrictions->PitchAlignment, GMM_BYTES(64));
pRestrictions->RenderPitchAlignment = GFX_MAX(pRestrictions->RenderPitchAlignment, GMM_BYTES(64));
}
// Multiply overall pitch alignment for surfaces whose U/V planes have a
// pitch down-scaled from that of Y--Since the U/V pitches must meet the
// original restriction, the Y pitch must meet a scaled-up multiple.
if((pTexInfo->Format == GMM_FORMAT_I420) ||
(pTexInfo->Format == GMM_FORMAT_IYUV) ||
(pTexInfo->Format == GMM_FORMAT_NV11) ||
(pTexInfo->Format == GMM_FORMAT_YV12) ||
(pTexInfo->Format == GMM_FORMAT_YVU9))
{
uint32_t LShift =
(pTexInfo->Format != GMM_FORMAT_YVU9) ?
1 : // UVPitch = 1/2 YPitch
2; // UVPitch = 1/4 YPitch
pRestrictions->LockPitchAlignment <<= LShift;
pRestrictions->MinPitch <<= LShift;
pRestrictions->PitchAlignment <<= LShift;
pRestrictions->RenderPitchAlignment <<= LShift;
}
AdjustedVHeight = VHeight;
// In case of Planar surfaces, only the last Plane has to be aligned to 64 for LCU access
if(pGmmLibContext->GetWaTable().WaAlignYUVResourceToLCU && GmmIsYUVFormatLCUAligned(pTexInfo->Format) && VHeight > 0)
{
AdjustedVHeight = GFX_ALIGN(VHeight, GMM_SCANLINES(GMM_MAX_LCU_SIZE));
Height += AdjustedVHeight - VHeight;
}
// For Tiled Planar surfaces, the planes must be tile-boundary aligned.
// Actual alignment is handled in FillPlanarOffsetAddress, but height
// and width must be adjusted for correct size calculation
if(GMM_IS_TILED(pPlatform->TileInfo[pTexInfo->TileMode]))
{
uint32_t TileHeight = pGmmLibContext->GetPlatformInfo().TileInfo[pTexInfo->TileMode].LogicalTileHeight;
uint32_t TileWidth = pGmmLibContext->GetPlatformInfo().TileInfo[pTexInfo->TileMode].LogicalTileWidth;
pTexInfo->OffsetInfo.Plane.IsTileAlignedPlanes = true;
//for separate U and V planes, use U plane unaligned and V plane aligned
Height = GFX_ALIGN(YHeight, TileHeight) + (UVPacked ? GFX_ALIGN(AdjustedVHeight, TileHeight) :
(GFX_ALIGN(VHeight, TileHeight) + GFX_ALIGN(AdjustedVHeight, TileHeight)));
if(pTexInfo->Format == GMM_FORMAT_IMC2 || // IMC2, IMC4 needs even tile columns
pTexInfo->Format == GMM_FORMAT_IMC4)
{
// If the U & V planes are side-by-side then the surface pitch must be
// padded out so that U and V planes will being on a tile boundary.
// This means that an odd Y plane width must be padded out
// with an additional tile. Even widths do not need padding
uint32_t TileCols = GFX_CEIL_DIV(WidthBytesPhysical, TileWidth);
if(TileCols % 2)
{
WidthBytesPhysical = (TileCols + 1) * TileWidth;
}
}
if(pTexInfo->Flags.Info.TiledYs || pTexInfo->Flags.Info.TiledYf)
{
pTexInfo->Flags.Info.RedecribedPlanes = true;
}
}
// Vary wide planar tiled planar formats do not support MMC pre gen11. All formats do not support
//Special case LKF MMC compressed surfaces
if(pTexInfo->Flags.Gpu.MMC &&
pTexInfo->Flags.Gpu.UnifiedAuxSurface &&
pTexInfo->Flags.Info.TiledY)
{
uint32_t TileHeight = pGmmLibContext->GetPlatformInfo().TileInfo[pTexInfo->TileMode].LogicalTileHeight;
Height = GFX_ALIGN(YHeight, TileHeight) + GFX_ALIGN(AdjustedVHeight, TileHeight);
}
// Vary wide planar tiled planar formats do not support MMC pre gen11. All formats do not support
// MMC above 16k bytes wide, while Yf NV12 does not support above 8k - 128 bytes.
if((GFX_GET_CURRENT_RENDERCORE(pPlatform->Platform) <= IGFX_GEN10_CORE) &&
(pTexInfo->Flags.Info.TiledY || pTexInfo->Flags.Info.TiledYf || pTexInfo->Flags.Info.TiledYs))
{
if(((pTexInfo->BaseWidth * pTexInfo->BitsPerPixel / 8) >= GMM_KBYTE(16)) ||
(pTexInfo->Format == GMM_FORMAT_NV12 && pTexInfo->Flags.Info.TiledYf &&
(pTexInfo->BaseWidth * pTexInfo->BitsPerPixel / 8) >= (GMM_KBYTE(8) - 128)))
{
pTexInfo->Flags.Gpu.MMC = 0;
}
}
if(pTexInfo->Flags.Info.RedecribedPlanes)
{
if(false == RedescribeTexturePlanes(pTexInfo, &WidthBytesPhysical))
{
__GMM_ASSERT(false);
}
}
if((Status = // <-- Note assignment.
FillTexPitchAndSize(
pTexInfo, WidthBytesPhysical, Height, pRestrictions)) == GMM_SUCCESS)
{
FillPlanarOffsetAddress(pTexInfo);
}
// Planar & hybrid 2D arrays supported in DX11.1+ spec but not HW. Memory layout
// is defined by SW requirements; Y plane must be 4KB aligned.
if(pTexInfo->ArraySize > 1)
{
GMM_GFX_SIZE_T ElementSizeBytes = pTexInfo->Size;
int64_t LargeSize;
// Size should always be page aligned.
__GMM_ASSERT((pTexInfo->Size % PAGE_SIZE) == 0);
if((LargeSize = (int64_t)ElementSizeBytes * pTexInfo->ArraySize) <= pPlatform->SurfaceMaxSize)
{
pTexInfo->OffsetInfo.Plane.ArrayQPitch = ElementSizeBytes;
pTexInfo->Size = LargeSize;
}
else
{
GMM_ASSERTDPF(0, "Surface too large!");
Status = GMM_ERROR;
}
}
GMM_DPF_EXIT;
return (Status);
} // FillTexPlanar