Skip to content

Commit e07a556

Browse files
authored
Codegeex2 tokenization fix (#11831)
* updated tokenizer file * updated tokenizer file * updated tokenizer file * updated tokenizer file * new folder
1 parent a508b0a commit e07a556

File tree

2 files changed

+303
-5
lines changed

2 files changed

+303
-5
lines changed

python/llm/example/GPU/HuggingFace/LLM/codegeex2/README.md

+14-5
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,6 @@ conda create -n llm python=3.11
1616
conda activate llm
1717
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
1818
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
19-
pip install transformers==4.31.0
2019
```
2120

2221
#### 1.2 Installation on Windows
@@ -27,10 +26,20 @@ conda activate llm
2726

2827
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
2928
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
30-
pip install transformers==4.31.0
3129
```
3230

33-
### 2. Configures OneAPI environment variables for Linux
31+
### 2. Download Model and Replace File
32+
If you select the codegeex2-6b model ([THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex2-6b)), please note that their code (`tokenization_chatglm.py`) initialized tokenizer after the call of `__init__` of its parent class, which may result in error during loading tokenizer. To address issue, we have provided an updated file ([tokenization_chatglm.py](./codegeex2-6b/tokenization_chatglm.py))
33+
34+
```python
35+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
36+
self.tokenizer = SPTokenizer(vocab_file)
37+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
38+
```
39+
40+
You could download the model from [THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex2-6b), and replace the file `tokenization_chatglm.py` with [tokenization_chatglm.py](./codegeex2-6b/tokenization_chatglm.py).
41+
42+
### 3. Configures OneAPI environment variables for Linux
3443

3544
> [!NOTE]
3645
> Skip this step if you are running on Windows.
@@ -41,7 +50,7 @@ This is a required step on Linux for APT or offline installed oneAPI. Skip this
4150
source /opt/intel/oneapi/setvars.sh
4251
```
4352

44-
### 3. Runtime Configurations
53+
### 4. Runtime Configurations
4554
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
4655
#### 3.1 Configurations for Linux
4756
<details>
@@ -105,7 +114,7 @@ set SYCL_CACHE_PERSISTENT=1
105114
> [!NOTE]
106115
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
107116
108-
### 4. Running examples
117+
### 5. Running examples
109118
```
110119
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
111120
```
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,289 @@
1+
#
2+
# Copyright 2016 The BigDL Authors.
3+
#
4+
# Licensed under the Apache License, Version 2.0 (the "License");
5+
# you may not use this file except in compliance with the License.
6+
# You may obtain a copy of the License at
7+
#
8+
# http://www.apache.org/licenses/LICENSE-2.0
9+
#
10+
# Unless required by applicable law or agreed to in writing, software
11+
# distributed under the License is distributed on an "AS IS" BASIS,
12+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13+
# See the License for the specific language governing permissions and
14+
# limitations under the License.
15+
#
16+
17+
# ===========================================================================
18+
#
19+
# This file is adapted from
20+
# https://huggingface.co/THUDM/codegeex2-6b/blob/ee1e7db429e587645bd3f0f4c3f5d8e6e843f2f6/tokenization_chatglm.py
21+
#
22+
# Apache 2.0 license
23+
# https://huggingface.co/THUDM/codegeex2-6b/blob/main/LICENSE
24+
25+
import os
26+
import torch
27+
from typing import List, Optional, Union, Dict
28+
from sentencepiece import SentencePieceProcessor
29+
from transformers import PreTrainedTokenizer
30+
from transformers.utils import logging, PaddingStrategy
31+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
32+
33+
34+
class SPTokenizer:
35+
def __init__(self, model_path: str):
36+
# reload tokenizer
37+
assert os.path.isfile(model_path), model_path
38+
self.sp_model = SentencePieceProcessor(model_file=model_path)
39+
40+
# BOS / EOS token IDs
41+
self.n_words: int = self.sp_model.vocab_size()
42+
self.bos_id: int = self.sp_model.bos_id()
43+
self.eos_id: int = self.sp_model.eos_id()
44+
self.pad_id: int = self.sp_model.unk_id()
45+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
46+
47+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"]
48+
self.special_tokens = {}
49+
self.index_special_tokens = {}
50+
for token in special_tokens:
51+
self.special_tokens[token] = self.n_words
52+
self.index_special_tokens[self.n_words] = token
53+
self.n_words += 1
54+
55+
def tokenize(self, s: str):
56+
return self.sp_model.EncodeAsPieces(s)
57+
58+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
59+
assert type(s) is str
60+
t = self.sp_model.encode(s)
61+
if bos:
62+
t = [self.bos_id] + t
63+
if eos:
64+
t = t + [self.eos_id]
65+
return t
66+
67+
def decode(self, t: List[int]) -> str:
68+
return self.sp_model.decode(t)
69+
70+
def decode_tokens(self, tokens: List[str]) -> str:
71+
text = self.sp_model.DecodePieces(tokens)
72+
return text
73+
74+
def convert_token_to_id(self, token):
75+
""" Converts a token (str) in an id using the vocab. """
76+
if token in self.special_tokens:
77+
return self.special_tokens[token]
78+
return self.sp_model.PieceToId(token)
79+
80+
def convert_id_to_token(self, index):
81+
"""Converts an index (integer) in a token (str) using the vocab."""
82+
if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
83+
return ""
84+
return self.sp_model.IdToPiece(index)
85+
86+
87+
class ChatGLMTokenizer(PreTrainedTokenizer):
88+
vocab_files_names = {"vocab_file": "tokenizer.model"}
89+
90+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
91+
92+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
93+
self.tokenizer = SPTokenizer(vocab_file)
94+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
95+
self.name = "GLMTokenizer"
96+
97+
self.vocab_file = vocab_file
98+
99+
self.special_tokens = {
100+
"<bos>": self.tokenizer.bos_id,
101+
"<eos>": self.tokenizer.eos_id,
102+
"<pad>": self.tokenizer.pad_id
103+
}
104+
105+
def get_command(self, token):
106+
if token in self.special_tokens:
107+
return self.special_tokens[token]
108+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
109+
return self.tokenizer.special_tokens[token]
110+
111+
@property
112+
def unk_token(self) -> str:
113+
return "<unk>"
114+
115+
@property
116+
def pad_token(self) -> str:
117+
return "<unk>"
118+
119+
@property
120+
def pad_token_id(self):
121+
return self.get_command("<pad>")
122+
123+
@property
124+
def eos_token(self) -> str:
125+
return "</s>"
126+
127+
@property
128+
def eos_token_id(self):
129+
return self.get_command("<eos>")
130+
131+
@property
132+
def vocab_size(self):
133+
return self.tokenizer.n_words
134+
135+
def get_vocab(self):
136+
""" Returns vocab as a dict """
137+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
138+
vocab.update(self.added_tokens_encoder)
139+
return vocab
140+
141+
def _tokenize(self, text, **kwargs):
142+
return self.tokenizer.tokenize(text)
143+
144+
def _convert_token_to_id(self, token):
145+
""" Converts a token (str) in an id using the vocab. """
146+
return self.tokenizer.convert_token_to_id(token)
147+
148+
def _convert_id_to_token(self, index):
149+
"""Converts an index (integer) in a token (str) using the vocab."""
150+
return self.tokenizer.convert_id_to_token(index)
151+
152+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
153+
return self.tokenizer.decode_tokens(tokens)
154+
155+
def save_vocabulary(self, save_directory, filename_prefix=None):
156+
"""
157+
Save the vocabulary and special tokens file to a directory.
158+
159+
Args:
160+
save_directory (`str`):
161+
The directory in which to save the vocabulary.
162+
filename_prefix (`str`, *optional*):
163+
An optional prefix to add to the named of the saved files.
164+
165+
Returns:
166+
`Tuple(str)`: Paths to the files saved.
167+
"""
168+
if os.path.isdir(save_directory):
169+
vocab_file = os.path.join(
170+
save_directory, self.vocab_files_names["vocab_file"]
171+
)
172+
else:
173+
vocab_file = save_directory
174+
175+
with open(self.vocab_file, 'rb') as fin:
176+
proto_str = fin.read()
177+
178+
with open(vocab_file, "wb") as writer:
179+
writer.write(proto_str)
180+
181+
return (vocab_file,)
182+
183+
def get_prefix_tokens(self):
184+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
185+
return prefix_tokens
186+
187+
def build_prompt(self, query, history=None):
188+
if history is None:
189+
history = []
190+
prompt = ""
191+
for i, (old_query, response) in enumerate(history):
192+
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
193+
prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
194+
return prompt
195+
196+
def build_inputs_with_special_tokens(
197+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
198+
) -> List[int]:
199+
"""
200+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
201+
adding special tokens. A BERT sequence has the following format:
202+
203+
- single sequence: `[CLS] X [SEP]`
204+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
205+
206+
Args:
207+
token_ids_0 (`List[int]`):
208+
List of IDs to which the special tokens will be added.
209+
token_ids_1 (`List[int]`, *optional*):
210+
Optional second list of IDs for sequence pairs.
211+
212+
Returns:
213+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
214+
"""
215+
prefix_tokens = self.get_prefix_tokens()
216+
token_ids_0 = prefix_tokens + token_ids_0
217+
if token_ids_1 is not None:
218+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
219+
return token_ids_0
220+
221+
def _pad(
222+
self,
223+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
224+
max_length: Optional[int] = None,
225+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
226+
pad_to_multiple_of: Optional[int] = None,
227+
return_attention_mask: Optional[bool] = None,
228+
) -> dict:
229+
"""
230+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
231+
232+
Args:
233+
encoded_inputs:
234+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
235+
max_length: maximum length of the returned list and optionally padding length (see below).
236+
Will truncate by taking into account the special tokens.
237+
padding_strategy: PaddingStrategy to use for padding.
238+
239+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
240+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
241+
- PaddingStrategy.DO_NOT_PAD: Do not pad
242+
The tokenizer padding sides are defined in self.padding_side:
243+
244+
- 'left': pads on the left of the sequences
245+
- 'right': pads on the right of the sequences
246+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
247+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
248+
`>= 7.5` (Volta).
249+
return_attention_mask:
250+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
251+
"""
252+
# Load from model defaults
253+
# assert self.padding_side == "left"
254+
255+
required_input = encoded_inputs[self.model_input_names[0]]
256+
seq_length = len(required_input)
257+
258+
if padding_strategy == PaddingStrategy.LONGEST:
259+
max_length = len(required_input)
260+
261+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
262+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
263+
264+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
265+
266+
# Initialize attention mask if not present.
267+
if "attention_mask" not in encoded_inputs:
268+
encoded_inputs["attention_mask"] = [1] * seq_length
269+
270+
if "position_ids" not in encoded_inputs:
271+
encoded_inputs["position_ids"] = list(range(seq_length))
272+
273+
if needs_to_be_padded:
274+
difference = max_length - len(required_input)
275+
276+
if self.padding_side == "left":
277+
if "attention_mask" in encoded_inputs:
278+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
279+
if "position_ids" in encoded_inputs:
280+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
281+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
282+
else:
283+
if "attention_mask" in encoded_inputs:
284+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
285+
if "position_ids" in encoded_inputs:
286+
encoded_inputs["position_ids"] = encoded_inputs["position_ids"] + [0] * difference
287+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
288+
289+
return encoded_inputs

0 commit comments

Comments
 (0)