forked from openvinotoolkit/model_server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrpc_binary_client.py
106 lines (99 loc) · 4.53 KB
/
grpc_binary_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#
# Copyright (c) 2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import grpc
import numpy as np
import classes
from tensorflow import make_tensor_proto, make_ndarray, make_tensor_proto
import datetime
import argparse
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
parser = argparse.ArgumentParser(description='Do requests to ie_serving and tf_serving using images in binary format')
parser.add_argument('--images_list', required=False, default='input_images.txt', help='path to a file with a list of labeled images')
parser.add_argument('--grpc_address',required=False, default='localhost', help='Specify url to grpc service. default:localhost')
parser.add_argument('--grpc_port',required=False, default=9000, help='Specify port to grpc service. default: 9000')
parser.add_argument('--input_name',required=False, default='image_bytes', help='Specify input tensor name. default: image_bytes')
parser.add_argument('--output_name',required=False, default='probabilities', help='Specify output name. default: probabilities')
parser.add_argument('--model_name', default='resnet', help='Define model name, must be same as is in service. default: resnet',
dest='model_name')
# If input numpy file has too few frames according to the value of iterations and the batch size, it will be
# duplicated to match requested number of frames
parser.add_argument('--batchsize', default=1, help='Number of images in a single request. default: 1',
dest='batchsize')
args = vars(parser.parse_args())
channel = grpc.insecure_channel("{}:{}".format(args['grpc_address'],args['grpc_port']))
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
input_images = args.get('images_list')
with open(input_images) as f:
lines = f.readlines()
batch_size = int(args.get('batchsize'))
while batch_size > len(lines):
lines += lines
print('Start processing:')
print('\tModel name: {}'.format(args.get('model_name')))
print('\tImages list file: {}'.format(args.get('images_list')))
count = 0
matched = 0
processing_times = np.zeros((0),int)
batch_i = 0
image_data = []
labels = []
for line in lines:
batch_i += 1
path, label = line.strip().split(" ")
with open(path, 'rb') as f:
image_data.append(f.read())
labels.append(label)
if batch_i < batch_size:
continue
request = predict_pb2.PredictRequest()
request.model_spec.name = args.get('model_name')
request.inputs[args['input_name']].CopyFrom(make_tensor_proto(image_data, shape=[len(image_data)]))
start_time = datetime.datetime.now()
result = stub.Predict(request, 10.0) # result includes a dictionary with all model outputs
end_time = datetime.datetime.now()
if args['output_name'] not in result.outputs:
print("Invalid output name", args['output_name'])
print("Available outputs:")
for Y in result.outputs:
print(Y)
exit(1)
duration = (end_time - start_time).total_seconds() * 1000
processing_times = np.append(processing_times,np.array([int(duration)]))
output = make_ndarray(result.outputs[args['output_name']])
nu = np.array(output)
# for object classification models show imagenet class
print('Batch: {}; Processing time: {:.2f} ms; speed {:.2f} fps'.format(count // batch_size, round(duration, 2), round(1000 / duration, 2)))
for i in range(nu.shape[0]):
offset = 0
if nu.shape[1] == 1001:
offset = 1
ma = np.argmax(nu[i]) - offset
mark_message = ""
if int(labels[i]) == ma:
matched += 1
mark_message = "; Correct match."
else:
mark_message = "; Incorrect match. Should be {} {}".format(label, classes.imagenet_classes[int(label)])
count += 1
print("\t", count, classes.imagenet_classes[ma], ma, mark_message)
image_data = []
labels = []
batch_i = 0
latency = np.average(processing_times)
accuracy = matched / count
print("Overall accuracy=",accuracy*100,"%")
print("Average latency=",latency,"ms")