forked from openvinotoolkit/model_server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrest_binary_client.py
166 lines (156 loc) · 6.82 KB
/
rest_binary_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#
# Copyright (c) 2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import requests
import numpy as np
import base64
import json
import classes
import datetime
import argparse
def create_request(image_data, request_format):
signature = "serving_default"
instances = []
if request_format == "row_name":
for image in image_data:
jpeg_bytes = base64.b64encode(image).decode('utf-8')
instances.append({args['input_name']: {"b64": jpeg_bytes}})
else:
for image in image_data:
jpeg_bytes = base64.b64encode(image).decode('utf-8')
instances.append({"b64": jpeg_bytes})
if request_format == "row_name":
data_obj = {"signature_name": signature, "instances": instances}
elif request_format == "row_noname":
data_obj = {"signature_name": signature, "instances": instances}
elif request_format == "column_name":
data_obj = {"signature_name": signature, 'inputs': {args['input_name']: instances}}
elif request_format == "column_noname":
data_obj = {"signature_name": signature, 'inputs': instances}
else:
print("invalid request format defined")
exit(1)
data_json = json.dumps(data_obj)
return data_json
parser = argparse.ArgumentParser(description='Sends requests via TensorFlow Serving RESTful API using images in binary format. '
'It displays performance statistics and optionally the model accuracy')
parser.add_argument('--images_list', required=False, default='input_images.txt',
help='path to a file with a list of labeled images')
parser.add_argument('--rest_url', required=False, default='http://localhost:8000',
help='Specify url to REST API service. default: http://localhost:8000')
parser.add_argument('--input_name', required=False, default='image_bytes',
help='Specify input tensor name. default: image_bytes')
parser.add_argument('--output_name', required=False, default='probabilities',
help='Specify output name. default: probabilities')
parser.add_argument('--model_name', default='resnet', help='Define model name, must be same as is in service. default: resnet',
dest='model_name')
parser.add_argument('--request_format', default='row_noname', help='Request format according to TF Serving API: row_noname,row_name,column_noname,column_name',
choices=["row_noname", "row_name", "column_noname", "column_name"], dest='request_format')
# If input numpy file has too few frames according to the value of iterations and the batch size, it will be
# duplicated to match requested number of frames
parser.add_argument('--batchsize', default=1, help='Number of images in a single request. default: 1',
dest='batchsize')
args = vars(parser.parse_args())
address = "{}/v1/models/{}:predict".format(
args['rest_url'], args['model_name'])
input_images = args.get('images_list')
with open(input_images) as f:
lines = f.readlines()
batch_size = int(args.get('batchsize'))
while batch_size > len(lines):
lines += lines
print('Start processing:')
print('\tModel name: {}'.format(args.get('model_name')))
print('\tImages list file: {}'.format(args.get('images_list')))
count = 0
matched = 0
processing_times = np.zeros((0), int)
batch_i = 0
image_data = []
labels = []
session = requests.Session()
for line in lines:
batch_i += 1
path, label = line.strip().split(" ")
with open(path, 'rb') as f:
image_data.append(f.read())
labels.append(label)
if batch_i < batch_size:
continue
# Compose a JSON Predict request (send JPEG image in base64).
predict_request = create_request(image_data, args['request_format'])
start_time = datetime.datetime.now()
result = session.post(address, data=predict_request)
end_time = datetime.datetime.now()
try:
result_dict = json.loads(result.text)
except ValueError:
print("The server response is not json format: {}",format(result.text))
exit(1)
if "error" in result_dict:
print('Server returned error: {}'.format(result_dict))
exit(1)
if "outputs" in result_dict: # is column format
keyname = "outputs"
if type(result_dict[keyname]) is dict:
if args['output_name'] not in result_dict[keyname]:
print("Invalid output name", args['output_name'])
print("Available outputs:")
for Y in result_dict[keyname]:
print(Y)
exit(1)
output = result_dict[keyname][args['output_name']]
else:
output = result_dict[keyname]
elif "predictions" in result_dict: # is row format
keyname = "predictions"
if type(result_dict[keyname][0]) is dict: # are multiple outputs
output = []
for row in result_dict[keyname]: # iterate over all results in the batch
output.append(row[args['output_name']])
else:
output = result_dict[keyname]
else:
print("Missing required response in {}".format(result_dict))
exit(1)
duration = (end_time - start_time).total_seconds() * 1000
processing_times = np.append(processing_times, np.array([int(duration)]))
# for object classification models show imagenet class
print('Batch: {}; Processing time: {:.2f} ms; speed {:.2f} fps'.format(
count // batch_size, round(duration, 2), round(1000 / duration, 2)))
nu = np.array(output) # numpy array with inference results
print("output shape: {}".format(nu.shape))
for i in range(nu.shape[0]):
single_result = nu[[i], ...]
offset = 0
if nu.shape[1] == 1001:
offset = 1
ma = np.argmax(single_result) - offset
mark_message = ""
if int(labels[i]) == ma:
matched += 1
mark_message = "; Correct match."
else:
mark_message = "; Incorrect match. Should be {} {}".format(
label, classes.imagenet_classes[int(label)])
count += 1
print("\t", count, classes.imagenet_classes[ma], ma, mark_message)
image_data = []
labels = []
batch_i = 0
latency = np.average(processing_times)
accuracy = matched / count
print("Overall accuracy=", accuracy*100, "%")
print("Average latency=", latency, "ms")