|
288 | 288 | },
|
289 | 289 | {
|
290 | 290 | "cell_type": "code",
|
291 |
| - "execution_count": 15, |
292 |
| - "metadata": {}, |
293 |
| - "outputs": [], |
294 |
| - "source": [ |
295 |
| - "from skimage import util" |
296 |
| - ] |
297 |
| - }, |
298 |
| - { |
299 |
| - "cell_type": "code", |
300 |
| - "execution_count": 77, |
301 |
| - "metadata": {}, |
302 |
| - "outputs": [ |
303 |
| - { |
304 |
| - "data": { |
305 |
| - "text/plain": [ |
306 |
| - "(614.0, 7744)" |
307 |
| - ] |
308 |
| - }, |
309 |
| - "execution_count": 77, |
310 |
| - "metadata": {}, |
311 |
| - "output_type": "execute_result" |
312 |
| - } |
313 |
| - ], |
314 |
| - "source": [ |
315 |
| - "util.random_noise(np.zeros((88, 88)), mode='s&p', amount=0.15).sum(), 88 * 88" |
316 |
| - ] |
317 |
| - }, |
318 |
| - { |
319 |
| - "cell_type": "code", |
320 |
| - "execution_count": 99, |
| 291 | + "execution_count": 105, |
321 | 292 | "metadata": {},
|
322 | 293 | "outputs": [],
|
323 | 294 | "source": [
|
| 295 | + "from skimage import util\n", |
| 296 | + "\n", |
| 297 | + "\n", |
324 | 298 | "def generate_noise(_images, amount):\n",
|
325 | 299 | " \n",
|
326 | 300 | " n, _, h, w = _images.shape\n",
|
327 | 301 | " \n",
|
328 |
| - " noise = np.random.uniform(size=(n, 1, h, w))\n", |
329 |
| - " portions = util.random_noise(np.zeros((n, 1, 88, 88)), mode='s&p', amount=amount)\n", |
| 302 | + " noise = np.array([np.random.uniform(size=(1, h, w)) for _ in range(n)])\n", |
| 303 | + " portions = np.array([\n", |
| 304 | + " util.random_noise(np.zeros((1, 88, 88)), mode='s&p', amount=amount)\n", |
| 305 | + " for _ in range(n)\n", |
| 306 | + " ])\n", |
330 | 307 | " noise = noise * portions\n",
|
331 | 308 | " \n",
|
332 | 309 | " return _images + noise.astype(np.float32)\n",
|
|
352 | 329 | " corrects += (predictions == labels.to(m.device)).sum().item()\n",
|
353 | 330 | "\n",
|
354 | 331 | " accuracy = 100 * corrects / num_data\n",
|
| 332 | + " \n", |
355 | 333 | " return accuracy"
|
356 | 334 | ]
|
357 | 335 | },
|
358 | 336 | {
|
359 | 337 | "cell_type": "code",
|
360 |
| - "execution_count": 103, |
| 338 | + "execution_count": 106, |
361 | 339 | "metadata": {},
|
362 | 340 | "outputs": [
|
363 | 341 | {
|
364 | 342 | "name": "stdout",
|
365 | 343 | "output_type": "stream",
|
366 | 344 | "text": [
|
367 |
| - "ratio = 0.01, accuracy = 98.56\n", |
368 |
| - "ratio = 0.05, accuracy = 94.39\n", |
369 |
| - "ratio = 0.10, accuracy = 85.03\n", |
370 |
| - "ratio = 0.15, accuracy = 73.65\n" |
| 345 | + "ratio = 0.01, accuracy = 98.23\n", |
| 346 | + "ratio = 0.05, accuracy = 94.19\n", |
| 347 | + "ratio = 0.10, accuracy = 85.28\n", |
| 348 | + "ratio = 0.15, accuracy = 73.40\n" |
371 | 349 | ]
|
372 | 350 | }
|
373 | 351 | ],
|
|
0 commit comments