|
| 1 | +import logging |
| 2 | +from numpy.lib import math |
| 3 | +from freqtrade.strategy.interface import IStrategy |
| 4 | +from freqtrade.strategy.hyper import IntParameter |
| 5 | +from pandas import DataFrame |
| 6 | +import talib.abstract as ta |
| 7 | +import numpy as np |
| 8 | +import freqtrade.vendor.qtpylib.indicators as qtpylib |
| 9 | + |
| 10 | + |
| 11 | +class SuperTrendPure(IStrategy): |
| 12 | + |
| 13 | + # ROI table: |
| 14 | + minimal_roi = { |
| 15 | + "0": 0.087, |
| 16 | + "372": 0.058, |
| 17 | + "861": 0.029, |
| 18 | + "2221": 0 |
| 19 | + } |
| 20 | + # Stoploss: |
| 21 | + stoploss = -0.265 |
| 22 | + |
| 23 | + # Trailing stop: |
| 24 | + trailing_stop = True |
| 25 | + trailing_stop_positive = 0.05 |
| 26 | + trailing_stop_positive_offset = 0.144 |
| 27 | + trailing_only_offset_is_reached = False |
| 28 | + |
| 29 | + timeframe = '1h' |
| 30 | + |
| 31 | + startup_candle_count = 50 |
| 32 | + |
| 33 | + def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: |
| 34 | + |
| 35 | + supertrend = self.supertrend(dataframe, 2, 8) |
| 36 | + dataframe['st'] = supertrend['ST'] |
| 37 | + dataframe['stx'] = supertrend['STX'] |
| 38 | + |
| 39 | + return dataframe |
| 40 | + |
| 41 | + def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: |
| 42 | + dataframe.loc[ |
| 43 | + ( |
| 44 | + (qtpylib.crossed_above(dataframe['close'], dataframe['st'])) & |
| 45 | + (dataframe['volume'].gt(0)) |
| 46 | + ), |
| 47 | + 'buy'] = 1 |
| 48 | + |
| 49 | + return dataframe |
| 50 | + |
| 51 | + def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: |
| 52 | + dataframe.loc[ |
| 53 | + ( |
| 54 | + (qtpylib.crossed_below(dataframe['close'], dataframe['st'])) & |
| 55 | + (dataframe['volume'].gt(0)) |
| 56 | + ), |
| 57 | + 'sell'] = 1 |
| 58 | + |
| 59 | + return dataframe |
| 60 | + |
| 61 | + """ |
| 62 | + Supertrend Indicator; adapted for freqtrade |
| 63 | + from: https://github.com/freqtrade/freqtrade-strategies/issues/30 |
| 64 | + """ |
| 65 | + def supertrend(self, dataframe: DataFrame, multiplier, period): |
| 66 | + df = dataframe.copy() |
| 67 | + |
| 68 | + df['TR'] = ta.TRANGE(df) |
| 69 | + df['ATR'] = ta.SMA(df['TR'], period) |
| 70 | + |
| 71 | + st = 'ST_' + str(period) + '_' + str(multiplier) |
| 72 | + stx = 'STX_' + str(period) + '_' + str(multiplier) |
| 73 | + |
| 74 | + # Compute basic upper and lower bands |
| 75 | + df['basic_ub'] = (df['high'] + df['low']) / 2 + multiplier * df['ATR'] |
| 76 | + df['basic_lb'] = (df['high'] + df['low']) / 2 - multiplier * df['ATR'] |
| 77 | + |
| 78 | + # Compute final upper and lower bands |
| 79 | + df['final_ub'] = 0.00 |
| 80 | + df['final_lb'] = 0.00 |
| 81 | + for i in range(period, len(df)): |
| 82 | + df['final_ub'].iat[i] = df['basic_ub'].iat[i] if df['basic_ub'].iat[i] < df['final_ub'].iat[i - 1] or df['close'].iat[i - 1] > df['final_ub'].iat[i - 1] else df['final_ub'].iat[i - 1] |
| 83 | + df['final_lb'].iat[i] = df['basic_lb'].iat[i] if df['basic_lb'].iat[i] > df['final_lb'].iat[i - 1] or df['close'].iat[i - 1] < df['final_lb'].iat[i - 1] else df['final_lb'].iat[i - 1] |
| 84 | + |
| 85 | + # Set the Supertrend value |
| 86 | + df[st] = 0.00 |
| 87 | + for i in range(period, len(df)): |
| 88 | + df[st].iat[i] = df['final_ub'].iat[i] if df[st].iat[i - 1] == df['final_ub'].iat[i - 1] and df['close'].iat[i] <= df['final_ub'].iat[i] else \ |
| 89 | + df['final_lb'].iat[i] if df[st].iat[i - 1] == df['final_ub'].iat[i - 1] and df['close'].iat[i] > df['final_ub'].iat[i] else \ |
| 90 | + df['final_lb'].iat[i] if df[st].iat[i - 1] == df['final_lb'].iat[i - 1] and df['close'].iat[i] >= df['final_lb'].iat[i] else \ |
| 91 | + df['final_ub'].iat[i] if df[st].iat[i - 1] == df['final_lb'].iat[i - 1] and df['close'].iat[i] < df['final_lb'].iat[i] else 0.00 |
| 92 | + # Mark the trend direction up/down |
| 93 | + df[stx] = np.where((df[st] > 0.00), np.where((df['close'] < df[st]), 'down', 'up'), np.NaN) |
| 94 | + |
| 95 | + # Remove basic and final bands from the columns |
| 96 | + df.drop(['basic_ub', 'basic_lb', 'final_ub', 'final_lb'], inplace=True, axis=1) |
| 97 | + |
| 98 | + df.fillna(0, inplace=True) |
| 99 | + |
| 100 | + return DataFrame(index=df.index, data={ |
| 101 | + 'ST' : df[st], |
| 102 | + 'STX' : df[stx] |
| 103 | + }) |
0 commit comments