-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathid3_paulina.py
175 lines (133 loc) · 4.81 KB
/
id3_paulina.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import random
import numpy as np
from collections import Counter
import seaborn as sn
import matplotlib.pyplot as plt
class Node:
def __init__(self, next_nodes={}):
self.next_nodes = next_nodes
self.d_id = None
def set_attr_id(self, d_id):
self.d_id = d_id
def set_label(self, label):
self.label = label
def set_class_name(self, class_name):
self.class_name = class_name
def set_next_nodes(self, next_nodes):
self.next_nodes = next_nodes
def divide_U(d, U):
d_values = set([row[d] for row in U])
U_subsets = {}
for value in d_values:
Uj = [row for row in U if row[d] == value]
U_subsets[value] = Uj
return U_subsets
def entropy_U(U, class_id):
classes = [row[class_id] for row in U]
counter = Counter(classes)
f = [count/len(U) for count in counter.values()]
return -sum([fi*np.log(fi) if fi != 0 else 0 for fi in f])
def entropy_subsets(d, U, class_id):
U_subsets = divide_U(d, U)
return sum([len(Uj)/len(U)*entropy_U(Uj, class_id) for Uj in U_subsets.values()])
def inf_gain(d, U, class_id):
I = entropy_U(U, class_id)
Inf = entropy_subsets(d, U, class_id)
return I - Inf
def find_the_best_d(U, D, class_id):
inf_gains = []
for d in D:
inf_gains.append(inf_gain(d, U, class_id))
d_best = max(inf_gains)
d_best_id = inf_gains.index(d_best)
return D[d_best_id]
def test(data, first_node, class_id):
correct = 0
pred_curr_vals = []
for row in data:
val = row[class_id]
predicted_val = test_current(row, first_node)
pred_curr_vals.append((predicted_val, val))
if val == predicted_val:
correct += 1
return correct, pred_curr_vals
def test_current(row, current_node):
if current_node.d_id is None:
return current_node.class_name
else:
d_id = current_node.d_id
for node_label in current_node.next_nodes:
node = current_node.next_nodes[node_label]
if row[d_id] == node_label:
return test_current(row, node)
def id3(D, U, class_id):
# D - attributes
# U - data
node = Node()
classes = [row[class_id] for row in U]
if len(set(classes)) == 1:
node.class_name = classes[0]
return node
if len(D) == 0:
counter = Counter(classes)
node.class_name = max(counter, key=counter.get)
return node
d_best_id = find_the_best_d(U, D, class_id)
U_subsets = divide_U(d_best_id, U)
node.set_attr_id(d_best_id)
tree = {}
D_new = [d for d in D if d!=d_best_id]
for value, subset in U_subsets.items():
tree[value] = id3(D_new, subset, class_id)
node.set_next_nodes(tree)
return node
def main(path, class_id=0):
data = []
with open(path, 'r') as file_handle:
for line in file_handle:
data.append(line[:-1].split(","))
data = [elem[:12] for elem in data]
D = [i for i in range(len(data[0])) if i != class_id]
print(D)
k = len(data)*3//5
data_valid = random.sample(data, k=k)
data_test = [x for x in data if x not in data_valid]
first_node = id3(D, data_valid, class_id)
correct, pred_curr_vals = test(data_test, first_node, class_id)
key1, key2 = set([row[class_id] for row in data])
tp = []
tn = []
fp = []
fn = []
for val in pred_curr_vals:
if val[0] == val[1] and val[1] == key1:
tp.append(val)
elif val[0] == val[1] and val[1] == key2:
tn.append(val)
elif val[0] != val[1] and val[1] == key1:
fp.append(val)
elif val[0] != val[1] and val[1] == key2:
fn.append(val)
# tp = len([val for val in pred_curr_vals if val[0] == val[1] and val[0] == key1])
# tn = len([val for val in pred_curr_vals if val[0] == val[1] and val[0] == key2])
# fp = len([val for val in pred_curr_vals if val[0] != val[1] and val[0] == key1])
# fn = len([val for val in pred_curr_vals if val[0] != val[1] and val[0] == key2])
confusion_matrix = [[len(fp), len(tp)], [len(tn), len(fn)]]
xlabel = [key2, key1]
ylabel = [key1, key2]
accuracy = correct/len(data_test)
plt.figure(figsize = (5, 4))
plot = sn.heatmap(confusion_matrix, annot=True, fmt="g", xticklabels=xlabel, yticklabels=ylabel)
plot.set(xlabel="Actual", ylabel="Predicted")
plt.show()
print(f'count of data: {len(data)}')
print(f'count of valid data: {len(data_valid)}')
print(f'count of test data: {len(data_test)}')
print(f'count of correct answers: {correct}')
print(f'accuracy: {accuracy}')
return correct
path = "/home/paulina/air/wsi/cw4_beta/agaricus-lepiota.data"
# path = "/home/paulina/air/wsi/cw4_beta/breast-cancer.data"
# path = "/home/paulina/air/wsi/cw4_ponownie/elo.data"
if __name__ == "__main__":
main(path)