-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtest_genv.py
157 lines (133 loc) · 4.73 KB
/
test_genv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import sys
from psp.env.genv import GEnv
from generic.utils import decode_mask
from psp.env.graphgym.async_vector_env import AsyncGraphVectorEnv
import torch
from collections import deque
def test_genv(problem_description_small, env_specification_small):
env = GEnv(problem_description_small, env_specification_small, [0])
obs, reward, done, _, info = env.step(0)
assert done == False
assert reward == 0
print("info[mask]", info["mask"])
assert torch.equal(
info["mask"],
torch.tensor([False, True, True, False, False, False, False, False]),
)
obs, reward, done, _, info = env.step(1)
assert done == False
assert reward == 0
assert torch.equal(
info["mask"],
torch.tensor([False, False, True, False, False, False, False, False]),
)
obs, reward, done, _, info = env.step(2)
assert done == False
assert reward == 0
assert torch.equal(
info["mask"],
torch.tensor([False, False, False, True, True, False, False, False]),
)
obs, reward, done, _, info = env.step(3)
assert done == False
assert reward == 0
assert torch.equal(
info["mask"],
torch.tensor([False, False, False, False, True, False, False, False]),
)
obs, reward, done, _, info = env.step(4)
assert done == False
assert reward == 0
assert torch.equal(
info["mask"],
torch.tensor([False, False, False, False, False, True, True, False]),
)
obs, reward, done, _, info = env.step(5)
assert done == False
assert reward == 0
assert torch.equal(
info["mask"],
torch.tensor([False, False, False, False, False, False, True, False]),
)
obs, reward, done, _, info = env.step(6)
assert done == False
assert reward == 0
assert torch.equal(
info["mask"],
torch.tensor([False, False, False, False, False, False, False, True]),
)
obs, reward, done, _, info = env.step(7)
assert done
# assert reward == -15 unnormalized
# assert reward == -1.25 normalized final value
assert reward == -15 / len(env.state.job_modes)
assert torch.equal(
info["mask"],
torch.tensor([False, False, False, False, False, False, False, False]),
)
def create_env(problem_description, env_specification, i):
def _init():
env = GEnv(problem_description, env_specification, i, validate=False)
return env
return _init
def pb_ids(problem_description, num_envs):
if not hasattr(problem_description, "train_psps"):
return list(range(num_envs)) # simple env id
# for psps, we should return a list per env of list of problems for this env
return [list(range(len(problem_description.train_psps)))] * num_envs
def test_graphenv(problem_description_small, env_specification_small):
num_envs = 2
pbs_per_env = pb_ids(problem_description_small, num_envs)
envs = AsyncGraphVectorEnv(
[
create_env(
problem_description_small,
env_specification_small,
pbs_per_env[i],
)
for i in range(num_envs)
],
# spwan helps when observation space is huge
# context="spawn",
copy=False,
)
o, info = envs.reset()
obs = []
action_masks = torch.empty((10, 2, env_specification_small.max_n_nodes))
dones = torch.empty((10, 2))
action_masks = torch.empty((10, 2, env_specification_small.max_n_nodes))
rewards = torch.empty((10, 2))
ep_info_buffer = deque(maxlen=100)
next_obs = o
action_mask = decode_mask(info["mask"])
next_done = torch.zeros(2)
actions = []
actions.append([0, 0])
actions.append([1, 2])
actions.append([2, 4])
actions.append([3, 6])
actions.append([4, 1])
actions.append([5, 3])
actions.append([6, 5])
actions.append([7, 7])
for step in range(8):
print("STEP ", step)
obs.append(next_obs)
action_masks[step] = torch.tensor(action_mask)
dones[step] = next_done
print("actions", actions[step])
next_obs, reward, done, _, info = envs.step(actions[step])
print("next_obs", next_obs)
print("reward", reward)
print("done", done)
print("info", info)
action_mask = decode_mask(info["mask"])
if "final_info" in info:
for ep_info in info["final_info"]:
if ep_info is not None: # some episode may be finished and other not
ep_info_buffer.append(ep_info["episode"])
# self.ep_info_buffer.extend(
# [ep_info["episode"] for ep_info in info["final_info"]]
# )
rewards[step] = torch.tensor(reward).view(-1)
next_done = torch.Tensor(done)