This repository was archived by the owner on Nov 19, 2017. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTeuwen-GaussianMF.tex
545 lines (488 loc) · 20.2 KB
/
Teuwen-GaussianMF.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
\documentclass[preprint,12pt]{elsarticle}
\makeatletter
\def\ps@pprintTitle{%
\let\@oddhead\@empty
\let\@evenhead\@empty
\def\@oddfoot{\centerline{\thepage}}%
\let\@evenfoot\@oddfoot}
\makeatother
\usepackage{amsmath, amssymb, color, verbatim}
\usepackage[active]{srcltx}
\usepackage{amsthm}
% These ones are needed to properly parse unicode like ö.
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
% \usepackage[strict=true]{csquotes} % Needs to be loaded *after* inputenc
\author{Jonas Teuwen}%
\address{Delft Institute of Applied Mathematics,
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The
Netherlands}%
%% \email{[email protected]}%
%% \urladdr{http://fa.its.tudelft.nl/~teuwen/}%
%% \thanks{}%
%% \date{\today}
%% \maketitle
\usepackage{enumerate}
% \usepackage{booktabs}% Better tables
% \makeatletter
% \@namedef{subjclassname@2010}{%
% \textup{2010} Mathematics Subject Classification}
% \makeatother
\swapnumbers
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{proposition}{Proposition}
\theoremstyle{remark}
\renewcommand{\qedsymbol}{\ensuremath{\blacksquare}}
\newtheorem*{remark}{Remark}
\newtheorem*{examples}{Examples}
\newcommand{\D}{\,\textup{d}}
\newcommand{\Dn}{\textup{d}} % One without space.
\newcommand{\Dt}{\,\frac{\textup{d} t}{t}}
\newcommand{\Ds}{\,\frac{\textup{d} s}{s}}
\newcommand{\DyDt}{\frac{\textup{d} y \, \textup{d} t}{t^{n+1}}}
\newcommand{\la}{\langle}
\newcommand{\ra}{\rangle}
\newcommand{\LHG}{{L^2(\R^d,\gamma)}}
\newcommand{\CcR}{{C_{\text{c}}(\R^d)}}
%% Symbols
\renewcommand{\leq}{\leqslant}
\renewcommand{\geq}{\geqslant}
\renewcommand{\epsilon}{\varepsilon}
\newcommand{\Fo}{\mathcal{F}}
\newcommand{\R}{\mathbf R}
\newcommand{\e}{\mathrm{e}} %Roman e for exponentials
\DeclareMathOperator{\supp}{supp}
\newcommand{\Dg}{\frac{\textup{d}\gamma (y)}{\gamma (B(y,t))}}
\newcommand{\Dmu}{\frac{\textup{d}\mu (y)}{\mu (B(y,t))}}
% \usepackage{tikz}
\def\lemmaeqrefname{Lemma}
\def\definitioneqrefname{Definition}
\def\theoremeqrefname{Theorem}
\def\corollaryeqrefname{Corollary}
\journal{Indagationes Mathematicae}
% \usepackage[pdftex,
% pdfauthor={Jonas Teuwen},
% pdftitle={A note on Gaussian maximal functions},
% pdfcreator={pdflatex}]{hyperref}
\begin{document}
\begin{frontmatter}
%% Title, authors and addresses
%% use the tnoteref command within \title for footnotes;
%% use the tnotetext command for the associated footnote;
%% use the fnref command within \author or \address for footnotes;
%% use the fntext command for the associated footnote;
%% use the corref command within \author for corresponding author footnotes;
%% use the cortext command for the associated footnote;
%% use the ead command for the email address,
%% and the form \ead[url] for the home page:
%%
%% \title{Title\tnoteref{label1}}
%% \tnotetext[label1]{}
%% \author{Name\corref{cor1}\fnref{label2}}
%% \ead{email address}
%% \ead[url]{home page}
%% \fntext[label2]{}
%% \cortext[cor1]{}
%% \address{Address\fnref{label3}}
%% \fntext[label3]{}
\title{A note on Gaussian maximal functions}
%% use optional labels to link authors explicitly to addresses:
%% \author[label1,label2]{<author name>}
%% \address[label1]{<address>}
%% \address[label2]{<address>}
%% \email{[email protected]}%
%% \urladdr{http://fa.its.tudelft.nl/~teuwen/}%
%% \thanks{}%
%% \date{\today}
%% \maketitle
\begin{abstract}
This note presents a proof that the non-tangential maximal function of the
Ornstein-Uhlenbeck semigroup is bounded pointwise by the Gaussian
Hardy-Littlewood maximal function. In particular this entails an extension on
a result by Pineda and Urbina \cite{Pineda2008} who proved a similar result
for a `truncated' version with fixed parameters of the non-tangential maximal
function.
We actually obtain boundedness of the maximal function on non-tangential
cones of arbitrary aperture.
\end{abstract}
\begin{keyword}
%% keywords here, in the form: keyword \sep keyword
Ornstein-Uhlenbeck semigroup \sep Mehler
kernel \sep Gaussian maximal function \sep admissible cones
\end{keyword}
\end{frontmatter}
% \subjclass[2010]{42B25 (Primary); 46E40 (Secondary)}
% \keywords{R-bounds, dyadic cubes}
\section{Introduction}
Maximal functions are among the most studied objects in harmonic
analysis.
It is well-known that the classical non-tangential maximal function associated
with the heat semigroup is bounded pointwise by the Hardy-Littlewood maximal
function, for every $x \in \R^d$, i.e.,
\begin{equation}\label{eq:classical}
\sup_{\substack{(y, t) \in \R^{d + 1}_+\\ |x - y| < t}} |\e^{t^2 \Delta}
u(y)| \lesssim \sup_{r
> 0} \frac1{|B_r(x)|}\int_{B_r(x)} |u| \D\lambda,
\end{equation}
for all locally integrable functions $u$ on $\R^d$ where $\lambda$ is
the Lebesgue measure on $\R^d$ (cf.\ \cite[Proposition II
2.1.]{Stein1993}).
Here the action of \emph{heat semigroup} $\e^{t \Delta} u = \rho_t \ast u$ is
given by a convolution of $u$ with the \emph{heat kernel}
\begin{equation*}
\rho_t(\xi) := \frac{\e^{-|\xi|^2/4t}}{(4\pi t)^{\frac{d}2}}, \:\text{with}\:
t > 0 \:\text{and}\: \xi \in \R^d.
\end{equation*}
In this note we are interested in its Gaussian counterpart. The change from
Lebesgue measure to the \textit{Gaussian measure}
\begin{equation}
\label{eq:Gaussian-measure}
\mathrm{d}\gamma(x) := \pi^{-\frac{d}2} \e^{-|x|^2} \D\lambda(x)
\end{equation}
introduces quite some intricate technical and conceptual difficulties which are
due to its non-doubling nature. Instead of the Laplacian, we will use its
Gaussian
analogue, the \emph{Ornstein-Uhlenbeck operator} $L$ which is given by
\begin{equation}
\label{eq:Ornstein-Uhlenbeck-operator}
L := \frac12 \Delta - \la x, \nabla \ra = -\frac12 \nabla^* \nabla,
\end{equation}
where $\nabla^*$ denotes the adjoint of $\nabla$ with respect to the measure
$\D\gamma$.
Our main result, to be proved in Theorem~\ref{thm:Gaussian-maximal-function},
is the following Gaussian analogue of \eqref{eq:classical}:
\begin{equation}
\label{eq:main}
\sup_{(y, t) \in \Gamma_x^{(A, a)}} |\e^{t^2 L} u(y)| \lesssim \sup_{r > 0}
\frac1{\gamma(B_r(x))}\int_{B_r(x)} |u| \, \D\gamma.
\end{equation}
Here,
\begin{equation}
\label{eq:Gaussian-cone}
\Gamma_x^{(A, a)} := \Gamma_x^{(A, a)}(\gamma) := \{(y, t) \in \R^{d + 1}_+
\,: \, |x - y| < At \:\text{and}\: t \leq a m(x)\}
\end{equation}
is the \textit{Gaussian cone} with aperture $A$ and cut-off parameter $a$, and
\begin{equation}\label{eq:m-function}
m(x) := \min\biggl\{1, \frac1{|x|} \biggr\}.
\end{equation}
As shown in \cite[Theorem 2.19]{Mattila1995} the centered Gaussian
Hardy-Littlewood maximal function is of weak-type $(1, 1)$ and is
$L^p(\gamma)$-bounded for $1 < p \leq \infty$. In fact, the same result holds
when the Gaussian measure $\gamma$ is replaced by any Radon measure $\mu$.
Furthermore, if $\mu$ is doubling, then these results even hold for the
\textit{uncentered} Hardy-Littlewood maximal function. For the Gaussian measure
$\gamma$ the uncentered weak-type $(1, 1)$ result is known to fail for $d > 1$ \cite{Sjogren1983}.
Nevertheless, the uncentered Hardy-Littlewood maximal function for $\gamma$ is
$L^p$-bounded for $1 < p \leq \infty$ \cite{Liliana2002}.
A slightly weaker version of the inequality \eqref{eq:main} has been proved by
Pineda and Urbina \cite{Pineda2008} who showed that
\begin{equation*}
\sup_{(y, t) \in \widetilde{\Gamma}_x} |\e^{t^2 L} u(y)|
\lesssim \sup_{r > 0} \frac1{\gamma(B_r(x))}\int_{B_r(x)} |u| \D\gamma,
\end{equation*}
where
\begin{equation*}
\widetilde{\Gamma}_x = \{(y, t) \in \R^d_+ : |x - y| < t \leq
\widetilde{m}(x)\}
\end{equation*}
is the `reduced' Gaussian cone corresponding to the function
\begin{equation*}
\widetilde{m}(x) = \min\biggl\{\frac12, \frac1{|x|}\biggr\}.
\end{equation*}
Our proof of \eqref{eq:main} is shorter than the one presented in
\cite{Pineda2008}. It has the further advantage of allowing
the extension to
cones with arbitrary aperture $A > 0$ and cut-off
parameter $a > 0$ without any additional technicalities. This additional
generality is important and has already been used by Portal (cf. the claim
made in \cite[discussion preceding Lemma 2.3]{Portal2014}) to prove the
$H^1$-boundedness of the Riesz transform associated with $L$.
\section{The Mehler kernel}
The \textit{Mehler kernel} (see e.g., \cite{Sjogren1997}) is the Schwartz
kernel associated to the Ornstein-Uhlenbeck semigroup $(\e^{tL})_{t \geq 0}$,
that is,
\begin{equation}
\label{eq:Ornstein-Uhlenbeck-semigroup-integral}
\e^{tL} u(x) = \int_{\R^d} M_t(x, \cdot) u \, \D\gamma.
\end{equation}
There is an abundance of literature on the Mehler kernel and its
properties. We shall only use the fact, proved e.g. in the survey paper
\cite{Sjogren1997}, that it is given explicitly by
\begin{equation}
\label{eq:Mehler-kernel-Sjogren}
M_t(x,y) = \frac{\exp\biggl(-\dfrac{|\e^{-t} x - y|^2}{1 - \e^{-2t}}
\biggr)}{(1 - \e^{-2t})^{\frac{d}2}} \e^{|y|^2}.
\end{equation}
Note that the symmetry of the semigroup $\e^{tL}$ allows us to conclude
that $M_t(x, y)$ is symmetric in $x$ and $y$ as well. A formula for
\eqref{eq:Mehler-kernel-Sjogren} honoring this observation is:
\begin{equation}
\label{eq:Mehler-kernel}
M_t(x, y) = \frac{\exp\biggl(-\e^{-2t} \dfrac{|x - y|^2}{1
- \e^{-2 t}} \biggr)}{(1 - \e^{-t})^{\frac{d}2}}
\frac{\exp\biggl(2\e^{-t} \dfrac{\la x, y \ra}{1 + \e^{-t}}
\biggr)}{(1 + \e^{-t})^{\frac{d}2}}.
\end{equation}
\section{Some lemmata}
We use $m$ as defined in \eqref{eq:m-function} in our next lemma,
which is taken from \cite[Lemma 2.3]{MaasNeervenPortal2011}.
\begin{lemma}\label{lem:m-xy-equivalence}
Let $a, A$ be strictly positive real numbers and $t > 0$. We have
for $x, y \in \R^d$ that:
\begin{enumerate}
\item If $|x - y| < A t$ and $t \leq a m(x)$, then $t
\leq a(1 + aA) m(y)$,
\item If $|x - y| < A m(x)$, then $m(x) \leq (1 +
A) m(y)$ and $m(y) \leq 2 (1 + A) m(x)$.
\end{enumerate}
\end{lemma}
The next lemma, taken from \cite[Proposition 2.1(i)]{Mauceri2007}, will come
useful when we want to cancel exponential
growth in one variable with exponential decay in the other as long
both variables are in a Gaussian cone.
For the reader's convenience, we include a short proof.
\begin{lemma}\label{lem:Cone-Gaussians-comparable}
Let $\alpha > 0$ and $|x - y| \leq \alpha m(x)$. Then:
\begin{equation*}
\e^{-\alpha^2-2\alpha} \e^{|y|^2}
\leq \e^{|x|^2} \leq
\e^{\alpha^2(1 + \alpha)^2+2\alpha(1 + \alpha)} \e^{|y|^2} .
\end{equation*}
\end{lemma}
\begin{proof}
By the triangle inequality and $m(x)|x| \leq 1$ we get,
\begin{equation*}
|y|^2 \leq (\alpha m(x) + |x|)^2 \leq \alpha^2 + 2 \alpha + |x|^2.
\end{equation*}
This gives the first inequality. For the second we use
Lemma~\ref{lem:m-xy-equivalence} to infer $m(x) \leq (1 + \alpha)
m(y)$. Proceeding as before we obtain
\begin{equation*}
|x|^2 \leq \alpha^2 (1 + \alpha)^2 + 2 \alpha (1 + \alpha) + |y|^2,
\end{equation*}
which finishes the proof.
\end{proof}
\subsection{An estimate on Gaussian balls}
Let $B := B_t(x)$ be the open Euclidean ball with radius $t$ and center $x$
and let $\gamma$ be the Gaussian measure as defined by
\eqref{eq:Gaussian-measure}. We shall denote by $S_d$ the surface area
of the unit sphere in $\R^d$.
\begin{lemma}\label{lem:Gaussian-ball-shift-lemma}
For all $x \in \R^d$ and $t > 0$ we have the inequality:
\begin{equation}\label{eq:Gaussian-ball-shift-lemma}
\gamma(B_t(x)) \leq \frac{S_d}{\pi^{\frac{d}2}} \frac{t^d}d \e^{2 t|x|}
\e^{-|x|^2}.
\end{equation}
\end{lemma}
\begin{proof}
Remark that, with $B := B_t(x)$,
\begin{align*}
\int_B \e^{-|\xi|^2} \D\xi &= \e^{-|x|^2} \int_{B} \e^{-|\xi -
x|^2} \e^{-2 \la x, \xi - x \ra} \D\xi\\
&\leq \e^{-|x|^2} \int_{B} \e^{-|\xi - x|^2} \e^{2 |x| |\xi - x|}
\D\xi\\
&\leq \e^{-|x|^2} \e^{2 t|x|} \int_{B} \e^{-|\xi - x|^2} \D\xi\\
&= \pi^{\frac{d}2} \e^{2 t|x|} \e^{-|x|^2} \gamma(B_t(0)).
\end{align*}
So, there holds that
\begin{equation}\label{eq:Gaussian-ball-shift-lemma-proof-1}
\gamma(B_t(x)) \leq \e^{2 t|x|} \e^{-|x|^2} \gamma(B_t(0)).
\end{equation}
We proceed by noting that
\begin{equation*}
\gamma(B_t(0)) \leq \pi^{-\frac{d}2} |B_t(0)| \leq \pi^{-\frac{d}2} t^d
\frac{S_d}d,
\end{equation*}
and combine this with the previous calculation to obtain
\begin{equation*}
\gamma(B_t(x)) \leq \frac{S_d}{\pi^{\frac{d}2}} \frac{t^d}d \e^{2 t|x|}
\e^{-|x|^2}.
\end{equation*}
This completes the proof.
\end{proof}
\subsection{Off-diagonal kernel estimates on annuli}
As is common in harmonic analysis, we often wish to decompose
$\R^d$ into sets on which certain phenomena are easier to handle. Here
we will decompose the space into disjoint annuli.
Throughout this subsection we fix $x \in \R^d$, constants $A, a \geq 1$, and a
pair
$(y,t) \in \Gamma_x^{(A, a)}$. We use the notation $rB$ to mean the ball
obtained from the ball $B$ by multiplying its radius by $r$.
The annuli $C_k := C_k(B_t(y))$ are given by:
\begin{equation}
\label{eq:C_k-annulus-decomposition}
C_k :=
\begin{cases}
2B_t(y), &k = 0,\\
2^{k + 1} B_t(y) \setminus 2^k B_t(y), &k \geq 1.
\end{cases}
\end{equation}
So, whenever $\xi$ is in $C_k$, we get for $k
\geq 1$ that
\begin{equation}
\label{eq:C_k-annulus-decomposition-expand}
2^k t \leq |y - \xi| < 2^{k + 1} t.
\end{equation}
On $C_k$ we have the following bound for $M_{t^2}(y,\cdot)$:
\begin{lemma}\label{lem:On-diagonal-kernel-estimates-on-Ck}
For all $\xi \in C_k$ for $k \geq 1$ we have:
\begin{equation}
\label{eq:On-diagonal-kernel-estimates-on-Ck}
M_{t^2}(y, \xi) \leq \frac{\e^{|y|^2}}{(1 - \e^{-2t^2})^{\frac{d}2}}
\exp\bigl(2^{k + 1} t |y| \bigr) \exp\Big(-\frac{4^k}{2 \e^{2 t^2}} \Bigr),
\end{equation}
\end{lemma}
\begin{proof}
Considering the first exponential which occurs in the Mehler kernel
\eqref{eq:Mehler-kernel} together with
\eqref{eq:C_k-annulus-decomposition-expand} gives for $k \geq 1$:
\begin{align*}
\exp\biggl(-\e^{-2t^2} \frac{|y - \xi|^2}{1 - \e^{-2t^2}} \biggr)
&\overset{\phantom{(\dagger)}}{\leq} \exp\biggl(-\frac{4^k}{\e^{2t^2}}
\frac{t^2}{1 - \e^{-2t^2}} \biggr)\\
&\overset{(\dagger)}{\leq} \exp\biggl(-\frac{4^k}{2 \e^{2t^2}} \biggr),
\end{align*}
where $(\dagger)$ follows from $1 - \e^{-s} \leq s$ for $s \geq 0$. Using the
estimate $1 + s \geq 2s$ for $0 \leq s \leq 1$, we find for the second
exponential in the Mehler kernel \eqref{eq:Mehler-kernel}, by
\eqref{eq:C_k-annulus-decomposition-expand} that
\begin{align*}
\exp\biggl(2\e^{-t^2} \frac{\la y, \xi \ra}{1 + \e^{- t^2}} \biggr)
& \leq \exp(|\la y, \xi \ra|)\\
& \leq \exp(|\langle y, \xi-y\rangle|) \e^{|y|^2}\\
& \leq \exp\bigl(2^{k + 1} t |y| \bigr) \e^{|y|^2}.
\end{align*}
Combining these estimates we obtain
\eqref{eq:On-diagonal-kernel-estimates-on-Ck}, as required.
\end{proof}
\section{The main result}
In this section we will prove our main theorem as mentioned in \eqref{eq:main}
for which the necessary preparations have already been made.
\begin{theorem}\label{thm:Gaussian-maximal-function}
Let $A, a > 0$. For all $x \in \R^d$ and all $u \in \CcR$ we have
\begin{equation}
\label{eq:Maximal-function-cone}
\sup_{(y, t) \in \Gamma_x^{(A, a)}} |\e^{t^2 L} u(y)| \lesssim
\sup_{r > 0} \frac1{\gamma(B_r(x))}\int_{B_r(x)} |u| \, \D\gamma,
\end{equation}
where the implicit constant only depends on $A, a$ and $d$.
\end{theorem}
\begin{proof}
We fix $x \in \R^d$ and $ (y, t) \in \Gamma_x^{(A, a)}$. The proof of
\eqref{eq:Maximal-function-cone} is based on splitting the
integration domain into the annuli $C_k$ as defined by
\eqref{eq:C_k-annulus-decomposition} and estimating on each annulus. More
explicit,
\begin{equation}
\label{eq:Maximal-function-cone-intermediate-step-1}
|\e^{t^2 L} u(y)| \leq \sum_{k = 0}^\infty I_k(y),
\:\text{where}\: I_k(y) := \int_{C_k} M_{t^2}(y, \cdot) |u(\cdot)|
\,\D\gamma.
\end{equation}
We have $t \leq a m(x) \leq a$ and, by Lemma~\ref{lem:m-xy-equivalence}, $t
|y| \leq a(1 + aA)$. Together with
Lemma~\ref{lem:On-diagonal-kernel-estimates-on-Ck} we infer, for $\xi \in
C_k$ and $k \geq 1$, that
\begin{align*}
\label{eq:Mehler-kernel-estimate-one-sided-bound-1}
M_{t^2}(y, \xi) &\leq \frac{\e^{|y|^2}}{(1 - \e^{-2t^2})^{\frac{d}2}}
\exp(2^{k + 1} a(1 + aA)) \exp\Big(-\frac{4^k}{2 \e^{2 a^2}} \Bigr)\\
&=: \frac{\e^{|y|^2}}{(1 - \e^{-2t^2})^{\frac{d}2}} c_k.
\end{align*}
Combining this with Lemma~\ref{lem:Cone-Gaussians-comparable}, we obtain
\begin{equation}
\label{eq:Mehler-kernel-estimate-one-sided-bound-1}
M_{t^2}(y, \xi) \lesssim_{A, a} \frac{\e^{|x|^2}}{(1 -
\e^{-2t^2})^{\frac{d}2}} c_k.
\end{equation}
Also, by \eqref{eq:C_k-annulus-decomposition-expand} we get
\begin{equation*}
|x - \xi| \leq |x - y| + |\xi - y| \leq (2^{k + 1} + A) t .
\end{equation*}
Let $K$ be the smallest integer such that $2^{k + 1} \geq A$ whenever $k \geq
K$. Then it follows that $C_k$ for $k \geq K$ is contained in $B_{2^{k +
2}t}(x)$ and for $k < K$ is contained in $B_{2At}(x)$. We set
\begin{equation*}
D_k := D_k(x) =
\begin{cases}
B_{2^{k + 2}t}(x) &\text{if $k \geq K$,}\\
B_{2At}(x) &\text{elsewhere.}
\end{cases}
\end{equation*}
Let us denote the supremum on right-hand side of
\eqref{eq:Maximal-function-cone} by $M_\gamma u (x)$. Using
\eqref{eq:Mehler-kernel-estimate-one-sided-bound-1}, we can bound the
integral on the right-hand side of
\eqref{eq:Maximal-function-cone-intermediate-step-1} by
\begin{align*}
\int_{C_k} M_{t^2}(y, \cdot) |u(\cdot)| \,\D\gamma & \lesssim_{A, a}
c_k \frac{\e^{|x|^2}}{(1 - \e^{-2t^2})^{\frac{d}2}} \int_{C_k}
|u| \,\D\gamma\\
&\leq c_k \frac {\e^{|x|^2}} {(1 -
\e^{-2t^2})^{\frac{d}2}} \int_{D_k} |u| \,\D\gamma\\
&\leq c_k \frac{\e^{|x|^2}}{(1 - \e^{-2t^2})^{\frac{d}2}} \gamma(D_k)
M_\gamma u(x),
\end{align*}
where we pause for a moment to compute a suitable bound for $\gamma(D_k)$. As
above we have both $t|x| \leq a m(x)|x| \leq a$ and $t \leq a$. Together with
Lemma~\ref{lem:Gaussian-ball-shift-lemma} applied to $D_k$ for $k \geq K$ we
obtain:
\begin{align*}
\gamma(D_k) \e^{|x|^2} &\lesssim_A C^d \frac{S_d}{d} t^d 2^{kd} \e^{2^{k +
3} t |x|}
\e^{-|x|^2} \e^{|x|^2}\\
&\lesssim_{A, a, d} t^d 2^{k d} \e^{2^{k + 3} a}.
\end{align*}
Similarly, for $k < K$:
\begin{equation*}
\gamma(D_k) \e^{|x|^2} \lesssim_{A, a, d} t^d \e^{2 A a}.
\end{equation*}
Using the bound $t\leq a$, we can infer that
\begin{equation*}
\frac{t^d}{(1 - \e^{-2t^2})^{\frac{d}2}} \leq \frac{a^d}{(1 -
\e^{-2a^2})^{\frac{d}2}} \lesssim_{a, d} 1.
\end{equation*}
(note that $s/(1-\e^{-s})$ is increasing). Combining these computations with
the ones above for $k \geq K$ we get
\begin{equation*}
\int_{C_k} M_{t^2}(y, \cdot) |u(\cdot)| \,\D\gamma \lesssim_{A,
a, d} c_k 2^{k d} \e^{2^{k + 2} a} M_\gamma u(x),
\end{equation*}
while for $k < K$ we get
\begin{equation*}
\int_{C_k} M_{t^2}(y, \cdot) |u(\cdot)| \,\D\gamma \lesssim_{A,
a, d} c_k M_\gamma u(x).
\end{equation*}
Similarly, for $\xi \in 2B_t(x)$ we obtain:
\begin{equation*}
I_0 := \int_{2B_t} M_{t^2}(y, \cdot) |u(\cdot)| \,\D\gamma \lesssim_{A,
a, d} M_\gamma u(x).
\end{equation*}
Inserting the dependency of $c_k$ upon $k$ as coming from
\eqref{eq:Mehler-kernel-estimate-one-sided-bound-1}, we obtain the bound:
\begin{align*}
|\e^{t^2 L} u(y)| &= I_0 + \sum_{k = 1}^{K - 1} I_k + \sum_{k = K}^\infty
I_k\\
&\lesssim_{A, a, d} \biggl[1 + \sum_{k = 1}^{K - 1} c_k + \sum_{k =
K}^\infty c_k
2^{k d} \e^{2^{k + 2}a} \biggr] M_\gamma u(x),\\
&\lesssim_{A, a, d} \biggl[1 + \sum_{k = 1}^{K - 1} \e^{-\frac{4^k}{2 \e^{2
a^2}}} + \sum_{k = K}^\infty 2^{k d} \e^{2^{k + 1} (1 + 2a + aA)}
\e^{-\frac{4^k}{2 \e^{2 a^2}}} \biggr] M_\gamma u(x),
\end{align*}
valid for all $(y, t) \in \Gamma_x^{(A, a)}$. As the sum on the right-hand
side
evidently converges, we see that taking the supremum proves
\eqref{eq:Maximal-function-cone}.
\end{proof}
\section{Acknowledgments}
This work initiated as part of a larger project in collaboration with Mikko
Kemppainen.
I would like to thank the referee for his/her useful suggestions.
\bibliographystyle{elsarticle-num}
\bibliography{Teuwen-GaussianMF}
\end{document}