1
1
# Install and start docker
2
2
# Then this file may be used to create a Docker container using:
3
- # $ docker build anaconda_py35_h2o_xgboost_graphviz
4
- # $ docker run -i -t -p 8888:8888 <image_id> /bin/bash -c "/opt/conda/bin/conda install jupyter -y --quiet && /opt/conda/bin/jupyter notebook --notebook-dir=/mli-resources --ip='*' --port=8888 --no-browser"
3
+ # $ sudo docker build -t iml anaconda_py36_h2o_xgboost_graphviz_shap
4
+ # $ sudo docker run -i -t -p 8888:8888 iml:latest /bin/bash -c "/opt/conda/bin/jupyter notebook --notebook-dir=/interpretable_machine_learning_with_python --allow-root --ip='*' --port=8888 --no-browser"
5
5
# Open a browser and navigate to localhost:8888
6
6
7
7
# Base debian system
8
- FROM debian:8.5
8
+ FROM debian:9.0
9
9
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
10
10
11
11
# Update OS
@@ -18,53 +18,37 @@ RUN echo 'export PATH=/opt/conda/bin:$PATH' > /etc/profile.d/conda.sh && \
18
18
wget --quiet https://repo.continuum.io/archive/Anaconda3-5.1.0-Linux-x86_64.sh -O ~/anaconda.sh && \
19
19
/bin/bash ~/anaconda.sh -b -p /opt/conda && \
20
20
rm ~/anaconda.sh
21
-
22
- RUN apt-get install -y curl grep sed dpkg && \
23
- TINI_VERSION=`curl https://github.com/krallin/tini/releases/latest | grep -o "/v.*\" " | sed 's:^..\( .*\) .$:\1 :' ` && \
24
- curl -L "https://github.com/krallin/tini/releases/download/v${TINI_VERSION}/tini_${TINI_VERSION}.deb" > tini.deb && \
25
- dpkg -i tini.deb && \
26
- rm tini.deb && \
27
- apt-get clean
28
-
29
21
ENV PATH /opt/conda/bin:$PATH
30
22
31
- ENTRYPOINT [ "/usr/bin/tini" , "--" ]
32
- CMD [ "/bin/bash" ]
33
-
34
23
# Java
35
- RUN apt-get -y -f install default-jdk
24
+ RUN apt-get -y install default-jre
36
25
37
26
# H2o deps
38
- RUN pip install requests && \
39
- pip install tabulate && \
40
- pip install six && \
41
- pip install future && \
42
- pip install colorama
27
+ RUN pip install requests tabulate six future colorama
43
28
44
29
# H2o
45
- RUN pip uninstall h2o || true && \
46
- pip install h2o==3.16.0.1
30
+ RUN pip install h2o==3.26.0.3
47
31
48
- # Git
49
- RUN apt-get -y install git
50
-
51
- # Examples
52
- RUN git clone https://github.com/jphall663/interpretable_machine_learning_with_python.git
32
+ # Pandas
33
+ RUN pip install pandas==0.23.4
53
34
54
35
# XGBoost
55
36
RUN apt-get update --fix-missing && \
56
37
apt-get -y install gcc g++ make && \
57
38
conda install -y libgcc && \
58
39
pip install xgboost==0.7.post3
59
40
41
+ # Shap
42
+ RUN pip install shap==0.28.0
43
+
44
+ # Seaborn
45
+ RUN pip install matplotlib==2.1.0 seaborn==0.8.1
46
+
47
+ # Git
48
+ RUN apt-get -y install git
49
+
60
50
# GraphViz
61
51
RUN apt-get -y install graphviz
62
52
63
- # Shap
64
- RUN pip install shap
65
-
66
- # Seaborn
67
- RUN pip install matplotlib==2.0.2 \
68
- seaborn==0.8.1
69
-
70
-
53
+ # Examples
54
+ RUN git clone https://github.com/jphall663/interpretable_machine_learning_with_python.git
0 commit comments