Skip to content

Commit f1a91ee

Browse files
Add files via upload
1 parent 3fb3876 commit f1a91ee

File tree

6 files changed

+1052
-0
lines changed

6 files changed

+1052
-0
lines changed

modules/__init__.py

Whitespace-only changes.

modules/attentions.py

+349
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,349 @@
1+
import copy
2+
import math
3+
import numpy as np
4+
import torch
5+
from torch import nn
6+
from torch.nn import functional as F
7+
8+
import modules.commons as commons
9+
import modules.modules as modules
10+
from modules.modules import LayerNorm
11+
12+
13+
class FFT(nn.Module):
14+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
15+
proximal_bias=False, proximal_init=True, **kwargs):
16+
super().__init__()
17+
self.hidden_channels = hidden_channels
18+
self.filter_channels = filter_channels
19+
self.n_heads = n_heads
20+
self.n_layers = n_layers
21+
self.kernel_size = kernel_size
22+
self.p_dropout = p_dropout
23+
self.proximal_bias = proximal_bias
24+
self.proximal_init = proximal_init
25+
26+
self.drop = nn.Dropout(p_dropout)
27+
self.self_attn_layers = nn.ModuleList()
28+
self.norm_layers_0 = nn.ModuleList()
29+
self.ffn_layers = nn.ModuleList()
30+
self.norm_layers_1 = nn.ModuleList()
31+
for i in range(self.n_layers):
32+
self.self_attn_layers.append(
33+
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
34+
proximal_init=proximal_init))
35+
self.norm_layers_0.append(LayerNorm(hidden_channels))
36+
self.ffn_layers.append(
37+
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
38+
self.norm_layers_1.append(LayerNorm(hidden_channels))
39+
40+
def forward(self, x, x_mask):
41+
"""
42+
x: decoder input
43+
h: encoder output
44+
"""
45+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
46+
x = x * x_mask
47+
for i in range(self.n_layers):
48+
y = self.self_attn_layers[i](x, x, self_attn_mask)
49+
y = self.drop(y)
50+
x = self.norm_layers_0[i](x + y)
51+
52+
y = self.ffn_layers[i](x, x_mask)
53+
y = self.drop(y)
54+
x = self.norm_layers_1[i](x + y)
55+
x = x * x_mask
56+
return x
57+
58+
59+
class Encoder(nn.Module):
60+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
61+
super().__init__()
62+
self.hidden_channels = hidden_channels
63+
self.filter_channels = filter_channels
64+
self.n_heads = n_heads
65+
self.n_layers = n_layers
66+
self.kernel_size = kernel_size
67+
self.p_dropout = p_dropout
68+
self.window_size = window_size
69+
70+
self.drop = nn.Dropout(p_dropout)
71+
self.attn_layers = nn.ModuleList()
72+
self.norm_layers_1 = nn.ModuleList()
73+
self.ffn_layers = nn.ModuleList()
74+
self.norm_layers_2 = nn.ModuleList()
75+
for i in range(self.n_layers):
76+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
77+
self.norm_layers_1.append(LayerNorm(hidden_channels))
78+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
79+
self.norm_layers_2.append(LayerNorm(hidden_channels))
80+
81+
def forward(self, x, x_mask):
82+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
83+
x = x * x_mask
84+
for i in range(self.n_layers):
85+
y = self.attn_layers[i](x, x, attn_mask)
86+
y = self.drop(y)
87+
x = self.norm_layers_1[i](x + y)
88+
89+
y = self.ffn_layers[i](x, x_mask)
90+
y = self.drop(y)
91+
x = self.norm_layers_2[i](x + y)
92+
x = x * x_mask
93+
return x
94+
95+
96+
class Decoder(nn.Module):
97+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
98+
super().__init__()
99+
self.hidden_channels = hidden_channels
100+
self.filter_channels = filter_channels
101+
self.n_heads = n_heads
102+
self.n_layers = n_layers
103+
self.kernel_size = kernel_size
104+
self.p_dropout = p_dropout
105+
self.proximal_bias = proximal_bias
106+
self.proximal_init = proximal_init
107+
108+
self.drop = nn.Dropout(p_dropout)
109+
self.self_attn_layers = nn.ModuleList()
110+
self.norm_layers_0 = nn.ModuleList()
111+
self.encdec_attn_layers = nn.ModuleList()
112+
self.norm_layers_1 = nn.ModuleList()
113+
self.ffn_layers = nn.ModuleList()
114+
self.norm_layers_2 = nn.ModuleList()
115+
for i in range(self.n_layers):
116+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
117+
self.norm_layers_0.append(LayerNorm(hidden_channels))
118+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
119+
self.norm_layers_1.append(LayerNorm(hidden_channels))
120+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
121+
self.norm_layers_2.append(LayerNorm(hidden_channels))
122+
123+
def forward(self, x, x_mask, h, h_mask):
124+
"""
125+
x: decoder input
126+
h: encoder output
127+
"""
128+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
129+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
130+
x = x * x_mask
131+
for i in range(self.n_layers):
132+
y = self.self_attn_layers[i](x, x, self_attn_mask)
133+
y = self.drop(y)
134+
x = self.norm_layers_0[i](x + y)
135+
136+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
137+
y = self.drop(y)
138+
x = self.norm_layers_1[i](x + y)
139+
140+
y = self.ffn_layers[i](x, x_mask)
141+
y = self.drop(y)
142+
x = self.norm_layers_2[i](x + y)
143+
x = x * x_mask
144+
return x
145+
146+
147+
class MultiHeadAttention(nn.Module):
148+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
149+
super().__init__()
150+
assert channels % n_heads == 0
151+
152+
self.channels = channels
153+
self.out_channels = out_channels
154+
self.n_heads = n_heads
155+
self.p_dropout = p_dropout
156+
self.window_size = window_size
157+
self.heads_share = heads_share
158+
self.block_length = block_length
159+
self.proximal_bias = proximal_bias
160+
self.proximal_init = proximal_init
161+
self.attn = None
162+
163+
self.k_channels = channels // n_heads
164+
self.conv_q = nn.Conv1d(channels, channels, 1)
165+
self.conv_k = nn.Conv1d(channels, channels, 1)
166+
self.conv_v = nn.Conv1d(channels, channels, 1)
167+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
168+
self.drop = nn.Dropout(p_dropout)
169+
170+
if window_size is not None:
171+
n_heads_rel = 1 if heads_share else n_heads
172+
rel_stddev = self.k_channels**-0.5
173+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
174+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
175+
176+
nn.init.xavier_uniform_(self.conv_q.weight)
177+
nn.init.xavier_uniform_(self.conv_k.weight)
178+
nn.init.xavier_uniform_(self.conv_v.weight)
179+
if proximal_init:
180+
with torch.no_grad():
181+
self.conv_k.weight.copy_(self.conv_q.weight)
182+
self.conv_k.bias.copy_(self.conv_q.bias)
183+
184+
def forward(self, x, c, attn_mask=None):
185+
q = self.conv_q(x)
186+
k = self.conv_k(c)
187+
v = self.conv_v(c)
188+
189+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
190+
191+
x = self.conv_o(x)
192+
return x
193+
194+
def attention(self, query, key, value, mask=None):
195+
# reshape [b, d, t] -> [b, n_h, t, d_k]
196+
b, d, t_s, t_t = (*key.size(), query.size(2))
197+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
198+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
199+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
200+
201+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
202+
if self.window_size is not None:
203+
assert t_s == t_t, "Relative attention is only available for self-attention."
204+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
205+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
206+
scores_local = self._relative_position_to_absolute_position(rel_logits)
207+
scores = scores + scores_local
208+
if self.proximal_bias:
209+
assert t_s == t_t, "Proximal bias is only available for self-attention."
210+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
211+
if mask is not None:
212+
scores = scores.masked_fill(mask == 0, -1e4)
213+
if self.block_length is not None:
214+
assert t_s == t_t, "Local attention is only available for self-attention."
215+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
216+
scores = scores.masked_fill(block_mask == 0, -1e4)
217+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
218+
p_attn = self.drop(p_attn)
219+
output = torch.matmul(p_attn, value)
220+
if self.window_size is not None:
221+
relative_weights = self._absolute_position_to_relative_position(p_attn)
222+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
223+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
224+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
225+
return output, p_attn
226+
227+
def _matmul_with_relative_values(self, x, y):
228+
"""
229+
x: [b, h, l, m]
230+
y: [h or 1, m, d]
231+
ret: [b, h, l, d]
232+
"""
233+
ret = torch.matmul(x, y.unsqueeze(0))
234+
return ret
235+
236+
def _matmul_with_relative_keys(self, x, y):
237+
"""
238+
x: [b, h, l, d]
239+
y: [h or 1, m, d]
240+
ret: [b, h, l, m]
241+
"""
242+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
243+
return ret
244+
245+
def _get_relative_embeddings(self, relative_embeddings, length):
246+
max_relative_position = 2 * self.window_size + 1
247+
# Pad first before slice to avoid using cond ops.
248+
pad_length = max(length - (self.window_size + 1), 0)
249+
slice_start_position = max((self.window_size + 1) - length, 0)
250+
slice_end_position = slice_start_position + 2 * length - 1
251+
if pad_length > 0:
252+
padded_relative_embeddings = F.pad(
253+
relative_embeddings,
254+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
255+
else:
256+
padded_relative_embeddings = relative_embeddings
257+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
258+
return used_relative_embeddings
259+
260+
def _relative_position_to_absolute_position(self, x):
261+
"""
262+
x: [b, h, l, 2*l-1]
263+
ret: [b, h, l, l]
264+
"""
265+
batch, heads, length, _ = x.size()
266+
# Concat columns of pad to shift from relative to absolute indexing.
267+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
268+
269+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
270+
x_flat = x.view([batch, heads, length * 2 * length])
271+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
272+
273+
# Reshape and slice out the padded elements.
274+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
275+
return x_final
276+
277+
def _absolute_position_to_relative_position(self, x):
278+
"""
279+
x: [b, h, l, l]
280+
ret: [b, h, l, 2*l-1]
281+
"""
282+
batch, heads, length, _ = x.size()
283+
# padd along column
284+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
285+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
286+
# add 0's in the beginning that will skew the elements after reshape
287+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
288+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
289+
return x_final
290+
291+
def _attention_bias_proximal(self, length):
292+
"""Bias for self-attention to encourage attention to close positions.
293+
Args:
294+
length: an integer scalar.
295+
Returns:
296+
a Tensor with shape [1, 1, length, length]
297+
"""
298+
r = torch.arange(length, dtype=torch.float32)
299+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
300+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
301+
302+
303+
class FFN(nn.Module):
304+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
305+
super().__init__()
306+
self.in_channels = in_channels
307+
self.out_channels = out_channels
308+
self.filter_channels = filter_channels
309+
self.kernel_size = kernel_size
310+
self.p_dropout = p_dropout
311+
self.activation = activation
312+
self.causal = causal
313+
314+
if causal:
315+
self.padding = self._causal_padding
316+
else:
317+
self.padding = self._same_padding
318+
319+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
320+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
321+
self.drop = nn.Dropout(p_dropout)
322+
323+
def forward(self, x, x_mask):
324+
x = self.conv_1(self.padding(x * x_mask))
325+
if self.activation == "gelu":
326+
x = x * torch.sigmoid(1.702 * x)
327+
else:
328+
x = torch.relu(x)
329+
x = self.drop(x)
330+
x = self.conv_2(self.padding(x * x_mask))
331+
return x * x_mask
332+
333+
def _causal_padding(self, x):
334+
if self.kernel_size == 1:
335+
return x
336+
pad_l = self.kernel_size - 1
337+
pad_r = 0
338+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
339+
x = F.pad(x, commons.convert_pad_shape(padding))
340+
return x
341+
342+
def _same_padding(self, x):
343+
if self.kernel_size == 1:
344+
return x
345+
pad_l = (self.kernel_size - 1) // 2
346+
pad_r = self.kernel_size // 2
347+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
348+
x = F.pad(x, commons.convert_pad_shape(padding))
349+
return x

0 commit comments

Comments
 (0)