forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_transforms.py
483 lines (387 loc) · 15.7 KB
/
test_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# Copyright 2020 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pytest
import theano
import theano.tensor as tt
import pymc3 as pm
import pymc3.distributions.transforms as tr
from pymc3.tests.checks import close_to, close_to_logical
from pymc3.tests.helpers import SeededTest
from pymc3.tests.test_distributions import (
Circ,
MultiSimplex,
R,
Rminusbig,
Rplusbig,
Simplex,
SortedVector,
Unit,
UnitSortedVector,
Vector,
)
from pymc3.theanof import jacobian
# some transforms (stick breaking) require additon of small slack in order to be numerically
# stable. The minimal addable slack for float32 is higher thus we need to be less strict
tol = 1e-7 if theano.config.floatX == "float64" else 1e-6
def check_transform(transform, domain, constructor=tt.dscalar, test=0):
x = constructor("x")
x.tag.test_value = test
# test forward and forward_val
forward_f = theano.function([x], transform.forward(x))
# test transform identity
identity_f = theano.function([x], transform.backward(transform.forward(x)))
for val in domain.vals:
close_to(val, identity_f(val), tol)
close_to(transform.forward_val(val), forward_f(val), tol)
def check_vector_transform(transform, domain):
return check_transform(transform, domain, tt.dvector, test=np.array([0, 0]))
def get_values(transform, domain=R, constructor=tt.dscalar, test=0):
x = constructor("x")
x.tag.test_value = test
f = theano.function([x], transform.backward(x))
return np.array([f(val) for val in domain.vals])
def check_jacobian_det(
transform, domain, constructor=tt.dscalar, test=0, make_comparable=None, elemwise=False
):
y = constructor("y")
y.tag.test_value = test
x = transform.backward(y)
if make_comparable:
x = make_comparable(x)
if not elemwise:
jac = tt.log(tt.nlinalg.det(jacobian(x, [y])))
else:
jac = tt.log(tt.abs_(tt.diag(jacobian(x, [y]))))
# ljd = log jacobian det
actual_ljd = theano.function([y], jac)
computed_ljd = theano.function(
[y], tt.as_tensor_variable(transform.jacobian_det(y)), on_unused_input="ignore"
)
for yval in domain.vals:
close_to(actual_ljd(yval), computed_ljd(yval), tol)
def test_stickbreaking():
with pytest.warns(
DeprecationWarning, match="The argument `eps` is deprecated and will not be used."
):
tr.StickBreaking(eps=1e-9)
check_vector_transform(tr.stick_breaking, Simplex(2))
check_vector_transform(tr.stick_breaking, Simplex(4))
check_transform(
tr.stick_breaking, MultiSimplex(3, 2), constructor=tt.dmatrix, test=np.zeros((2, 2))
)
def test_stickbreaking_bounds():
vals = get_values(tr.stick_breaking, Vector(R, 2), tt.dvector, np.array([0, 0]))
close_to(vals.sum(axis=1), 1, tol)
close_to_logical(vals > 0, True, tol)
close_to_logical(vals < 1, True, tol)
check_jacobian_det(
tr.stick_breaking, Vector(R, 2), tt.dvector, np.array([0, 0]), lambda x: x[:-1]
)
def test_stickbreaking_accuracy():
val = np.array([-30])
x = tt.dvector("x")
x.tag.test_value = val
identity_f = theano.function([x], tr.stick_breaking.forward(tr.stick_breaking.backward(x)))
close_to(val, identity_f(val), tol)
def test_sum_to_1():
check_vector_transform(tr.sum_to_1, Simplex(2))
check_vector_transform(tr.sum_to_1, Simplex(4))
check_jacobian_det(tr.sum_to_1, Vector(Unit, 2), tt.dvector, np.array([0, 0]), lambda x: x[:-1])
def test_log():
check_transform(tr.log, Rplusbig)
check_jacobian_det(tr.log, Rplusbig, elemwise=True)
check_jacobian_det(tr.log, Vector(Rplusbig, 2), tt.dvector, [0, 0], elemwise=True)
vals = get_values(tr.log)
close_to_logical(vals > 0, True, tol)
def test_log_exp_m1():
check_transform(tr.log_exp_m1, Rplusbig)
check_jacobian_det(tr.log_exp_m1, Rplusbig, elemwise=True)
check_jacobian_det(tr.log_exp_m1, Vector(Rplusbig, 2), tt.dvector, [0, 0], elemwise=True)
vals = get_values(tr.log_exp_m1)
close_to_logical(vals > 0, True, tol)
def test_logodds():
check_transform(tr.logodds, Unit)
check_jacobian_det(tr.logodds, Unit, elemwise=True)
check_jacobian_det(tr.logodds, Vector(Unit, 2), tt.dvector, [0.5, 0.5], elemwise=True)
vals = get_values(tr.logodds)
close_to_logical(vals > 0, True, tol)
close_to_logical(vals < 1, True, tol)
def test_lowerbound():
trans = tr.lowerbound(0.0)
check_transform(trans, Rplusbig)
check_jacobian_det(trans, Rplusbig, elemwise=True)
check_jacobian_det(trans, Vector(Rplusbig, 2), tt.dvector, [0, 0], elemwise=True)
vals = get_values(trans)
close_to_logical(vals > 0, True, tol)
def test_upperbound():
trans = tr.upperbound(0.0)
check_transform(trans, Rminusbig)
check_jacobian_det(trans, Rminusbig, elemwise=True)
check_jacobian_det(trans, Vector(Rminusbig, 2), tt.dvector, [-1, -1], elemwise=True)
vals = get_values(trans)
close_to_logical(vals < 0, True, tol)
def test_interval():
for a, b in [(-4, 5.5), (0.1, 0.7), (-10, 4.3)]:
domain = Unit * np.float64(b - a) + np.float64(a)
trans = tr.interval(a, b)
check_transform(trans, domain)
check_jacobian_det(trans, domain, elemwise=True)
vals = get_values(trans)
close_to_logical(vals > a, True, tol)
close_to_logical(vals < b, True, tol)
@pytest.mark.skipif(theano.config.floatX == "float32", reason="Test fails on 32 bit")
def test_interval_near_boundary():
lb = -1.0
ub = 1e-7
x0 = np.nextafter(ub, lb)
with pm.Model() as model:
pm.Uniform("x", testval=x0, lower=lb, upper=ub)
log_prob = model.check_test_point()
np.testing.assert_allclose(log_prob.values, np.array([-52.68]))
def test_circular():
trans = tr.circular
check_transform(trans, Circ)
check_jacobian_det(trans, Circ)
vals = get_values(trans)
close_to_logical(vals > -np.pi, True, tol)
close_to_logical(vals < np.pi, True, tol)
assert isinstance(trans.forward(1), tt.TensorConstant)
def test_ordered():
check_vector_transform(tr.ordered, SortedVector(6))
check_jacobian_det(tr.ordered, Vector(R, 2), tt.dvector, np.array([0, 0]), elemwise=False)
vals = get_values(tr.ordered, Vector(R, 3), tt.dvector, np.zeros(3))
close_to_logical(np.diff(vals) >= 0, True, tol)
@pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on float32")
def test_chain():
chain_tranf = tr.Chain([tr.logodds, tr.ordered])
check_vector_transform(chain_tranf, UnitSortedVector(3))
check_jacobian_det(chain_tranf, Vector(R, 4), tt.dvector, np.zeros(4), elemwise=False)
vals = get_values(chain_tranf, Vector(R, 5), tt.dvector, np.zeros(5))
close_to_logical(np.diff(vals) >= 0, True, tol)
def test_zerosum():
zerosum_axes = [0]
zerosum_transf = tr.ZeroSumTransform(zerosum_axes)
vals = get_values(zerosum_transf, Vector(R, 5), tt.dvector, np.random.random(5))
close_to_logical(np.mean(vals) >= 0, True, tol)
class TestElementWiseLogp(SeededTest):
def build_model(self, distfam, params, shape, transform, testval=None):
if testval is not None:
testval = pm.floatX(testval)
with pm.Model() as m:
distfam("x", shape=shape, transform=transform, testval=testval, **params)
return m
def check_transform_elementwise_logp(self, model):
x0 = model.deterministics[0]
x = model.free_RVs[0]
assert x.ndim == x.logp_elemwiset.ndim
pt = model.test_point
array = np.random.randn(*pt[x.name].shape)
pt[x.name] = array
dist = x.distribution
logp_nojac = x0.distribution.logp(dist.transform_used.backward(array))
jacob_det = dist.transform_used.jacobian_det(theano.shared(array))
assert x.logp_elemwiset.ndim == jacob_det.ndim
elementwiselogp = logp_nojac + jacob_det
close_to(x.logp_elemwise(pt), elementwiselogp.eval(), tol)
def check_vectortransform_elementwise_logp(self, model, vect_opt=0):
x0 = model.deterministics[0]
x = model.free_RVs[0]
assert (x.ndim - 1) == x.logp_elemwiset.ndim
pt = model.test_point
array = np.random.randn(*pt[x.name].shape)
pt[x.name] = array
dist = x.distribution
logp_nojac = x0.distribution.logp(dist.transform_used.backward(array))
jacob_det = dist.transform_used.jacobian_det(theano.shared(array))
assert x.logp_elemwiset.ndim == jacob_det.ndim
if vect_opt == 0:
# the original distribution is univariate
elementwiselogp = logp_nojac.sum(axis=-1) + jacob_det
else:
elementwiselogp = logp_nojac + jacob_det
# Hack to get relative tolerance
a = x.logp_elemwise(pt)
b = elementwiselogp.eval()
close_to(a, b, np.abs(0.5 * (a + b) * tol))
@pytest.mark.parametrize(
"sd,shape",
[
(2.5, 2),
(5.0, (2, 3)),
(np.ones(3) * 10.0, (4, 3)),
],
)
def test_half_normal(self, sd, shape):
model = self.build_model(pm.HalfNormal, {"sd": sd}, shape=shape, transform=tr.log)
self.check_transform_elementwise_logp(model)
@pytest.mark.parametrize("lam,shape", [(2.5, 2), (5.0, (2, 3)), (np.ones(3), (4, 3))])
def test_exponential(self, lam, shape):
model = self.build_model(pm.Exponential, {"lam": lam}, shape=shape, transform=tr.log)
self.check_transform_elementwise_logp(model)
@pytest.mark.parametrize(
"a,b,shape",
[
(1.0, 1.0, 2),
(0.5, 0.5, (2, 3)),
(np.ones(3), np.ones(3), (4, 3)),
],
)
def test_beta(self, a, b, shape):
model = self.build_model(
pm.Beta, {"alpha": a, "beta": b}, shape=shape, transform=tr.logodds
)
self.check_transform_elementwise_logp(model)
@pytest.mark.parametrize(
"lower,upper,shape",
[
(0.0, 1.0, 2),
(0.5, 5.5, (2, 3)),
(pm.floatX(np.zeros(3)), pm.floatX(np.ones(3)), (4, 3)),
],
)
def test_uniform(self, lower, upper, shape):
interval = tr.Interval(lower, upper)
model = self.build_model(
pm.Uniform, {"lower": lower, "upper": upper}, shape=shape, transform=interval
)
self.check_transform_elementwise_logp(model)
@pytest.mark.parametrize(
"mu,kappa,shape", [(0.0, 1.0, 2), (-0.5, 5.5, (2, 3)), (np.zeros(3), np.ones(3), (4, 3))]
)
def test_vonmises(self, mu, kappa, shape):
model = self.build_model(
pm.VonMises, {"mu": mu, "kappa": kappa}, shape=shape, transform=tr.circular
)
self.check_transform_elementwise_logp(model)
@pytest.mark.parametrize(
"a,shape", [(np.ones(2), 2), (np.ones((2, 3)) * 0.5, (2, 3)), (np.ones(3), (4, 3))]
)
def test_dirichlet(self, a, shape):
model = self.build_model(pm.Dirichlet, {"a": a}, shape=shape, transform=tr.stick_breaking)
self.check_vectortransform_elementwise_logp(model, vect_opt=1)
def test_normal_ordered(self):
model = self.build_model(
pm.Normal,
{"mu": 0.0, "sd": 1.0},
shape=3,
testval=np.asarray([-1.0, 1.0, 4.0]),
transform=tr.ordered,
)
self.check_vectortransform_elementwise_logp(model, vect_opt=0)
@pytest.mark.parametrize(
"sd,shape",
[
(2.5, (2,)),
(np.ones(3), (4, 3)),
],
)
@pytest.mark.xfail(condition=(theano.config.floatX == "float32"), reason="Fails on float32")
def test_half_normal_ordered(self, sd, shape):
testval = np.sort(np.abs(np.random.randn(*shape)))
model = self.build_model(
pm.HalfNormal,
{"sd": sd},
shape=shape,
testval=testval,
transform=tr.Chain([tr.log, tr.ordered]),
)
self.check_vectortransform_elementwise_logp(model, vect_opt=0)
@pytest.mark.parametrize("lam,shape", [(2.5, (2,)), (np.ones(3), (4, 3))])
def test_exponential_ordered(self, lam, shape):
testval = np.sort(np.abs(np.random.randn(*shape)))
model = self.build_model(
pm.Exponential,
{"lam": lam},
shape=shape,
testval=testval,
transform=tr.Chain([tr.log, tr.ordered]),
)
self.check_vectortransform_elementwise_logp(model, vect_opt=0)
@pytest.mark.parametrize(
"a,b,shape",
[
(1.0, 1.0, (2,)),
(np.ones(3), np.ones(3), (4, 3)),
],
)
def test_beta_ordered(self, a, b, shape):
testval = np.sort(np.abs(np.random.rand(*shape)))
model = self.build_model(
pm.Beta,
{"alpha": a, "beta": b},
shape=shape,
testval=testval,
transform=tr.Chain([tr.logodds, tr.ordered]),
)
self.check_vectortransform_elementwise_logp(model, vect_opt=0)
@pytest.mark.parametrize(
"lower,upper,shape",
[(0.0, 1.0, (2,)), (pm.floatX(np.zeros(3)), pm.floatX(np.ones(3)), (4, 3))],
)
def test_uniform_ordered(self, lower, upper, shape):
interval = tr.Interval(lower, upper)
testval = np.sort(np.abs(np.random.rand(*shape)))
model = self.build_model(
pm.Uniform,
{"lower": lower, "upper": upper},
shape=shape,
testval=testval,
transform=tr.Chain([interval, tr.ordered]),
)
self.check_vectortransform_elementwise_logp(model, vect_opt=0)
@pytest.mark.parametrize(
"mu,kappa,shape", [(0.0, 1.0, (2,)), (np.zeros(3), np.ones(3), (4, 3))]
)
def test_vonmises_ordered(self, mu, kappa, shape):
testval = np.sort(np.abs(np.random.rand(*shape)))
model = self.build_model(
pm.VonMises,
{"mu": mu, "kappa": kappa},
shape=shape,
testval=testval,
transform=tr.Chain([tr.circular, tr.ordered]),
)
self.check_vectortransform_elementwise_logp(model, vect_opt=0)
@pytest.mark.parametrize(
"lower,upper,shape,transform",
[
(0.0, 1.0, (2,), tr.stick_breaking),
(0.5, 5.5, (2, 3), tr.stick_breaking),
(np.zeros(3), np.ones(3), (4, 3), tr.Chain([tr.sum_to_1, tr.logodds])),
],
)
def test_uniform_other(self, lower, upper, shape, transform):
testval = np.ones(shape) / shape[-1]
model = self.build_model(
pm.Uniform,
{"lower": lower, "upper": upper},
shape=shape,
testval=testval,
transform=transform,
)
self.check_vectortransform_elementwise_logp(model, vect_opt=0)
@pytest.mark.parametrize(
"mu,cov,shape",
[
(np.zeros(2), np.diag(np.ones(2)), (2,)),
(np.zeros(3), np.diag(np.ones(3)), (4, 3)),
],
)
def test_mvnormal_ordered(self, mu, cov, shape):
testval = np.sort(np.random.randn(*shape))
model = self.build_model(
pm.MvNormal, {"mu": mu, "cov": cov}, shape=shape, testval=testval, transform=tr.ordered
)
self.check_vectortransform_elementwise_logp(model, vect_opt=1)